"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Qcodes example with Keysight B1500 Semiconductor Parameter Analyzer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instrument Short info\n",
"Here a short introduction on how the B1500 measurement system is composed is given. For a detailed overview it is strongly recommended to refer to the *B1500 Programming Guide* and also the *Parametric Measurement Handbook* by Keysight.\n",
"\n",
"### Physical grouping\n",
"The Keysight B1500 Semiconductor Parameter Analyzer consists of a *Mainframe* and can be equipped with various instrument *Modules*. 10 *Slots* are available in which up to 10 *modules* can be installed (some *modules* occupy two *slots*). Each *module* can have one or two *channels*.\n",
"\n",
"### Logical grouping\n",
"The measurements are typically done in one of the 20 measurement modes. The modes can be roughly subdivided into \n",
" - Spot measurements\n",
" - **High Speed Spot Measurements**\n",
" - Pulsed Spot measurement\n",
" - Sweep Measurements\n",
" - Search Measurements\n",
"\n",
"The **High Speed Spot (HSS)** Mode is essentually just a fancy way of saying to take readings and forcing constant voltages/currents. The *HSS* commands work at any time, independent of the currenttly selected Measurment Mode.\n",
"\n",
"With the exception of the *High Speed Spot Measurement Mode*, the other modes have to be activated and configured by the user."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Qcodes driver info\n",
"As can be seen already from the instrument short info, the instrument is very versatile, but also very complex. Hence the driver will eventually consist of two layers:\n",
" - The Low Level interface allows one to utilize all functions of the driver by offering a thin wrapper around the FLEX command set that the B1500 understands. \n",
" - A Higher Level interface that provides a convenient access to the more frequently used features. Not all features are available via the high level interface.\n",
"\n",
"The two driver levels can be used at the same time, so even if some functionality is not yet implemented in the high-level interface, the user can send a corresponding low-level command.\n",
"\n",
"### Integer Flags and Constants used in the driver\n",
"Both the high-level and the low-level interface use integer constants in many commands. For user convienience, the `qcodes.instrument_drivers.Keysight.keysightb1500.constants` provides more descriptive Python Enums for these constants. Although bare integer values can still be used, it is highly recommended to use the enumerations in order to avoid mistakes.\n",
"\n",
"### High level interface\n",
"The high level exposes instrument functionality via QCodes Parameters and Python methods on the mainframe object and the individual instrument module objects. For example, *High Speed Spot* Measurement commands for forcing constant voltages/currents or for taking simple readings are implemented.\n",
"\n",
"### Low level interface\n",
"The Low Level interface (`MessageBuilder` class) provides a wrapper function for each FLEX command. From the low-level, the full functionality of the instrument can be controlled.\n",
"\n",
"The `MessageBuilder` assembles a message string which later can be sent to the instrument using the low level `write` and `ask` methods. One can also use the `MessageBuilder` to write FLEX complex measurement routines that are stored in the B1500 and can be executed at a later point. This can be done to enable fast execution."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Programming Examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initializing the instrument"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Markdown, display\n",
"from matplotlib import pyplot as plt\n",
"from pyvisa.errors import VisaIOError\n",
"\n",
"import qcodes as qc\n",
"from qcodes.dataset import (\n",
" Measurement,\n",
" initialise_database,\n",
" load_or_create_experiment,\n",
" plot_dataset,\n",
")\n",
"from qcodes.instrument_drivers.Keysight import KeysightB1500\n",
"from qcodes.instrument_drivers.Keysight.keysightb1500 import MessageBuilder, constants"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"station = qc.Station() # Create a station to hold all the instruments"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[spa(KeysightB1500)] Could not connect at GPIB21::17::INSTR\n",
"Traceback (most recent call last):\n",
" File \"C:\\Users\\jenielse\\source\\repos\\Qcodes\\qcodes\\instrument\\visa.py\", line 116, in _connect_and_handle_error\n",
" visa_handle, visabackend = self._open_resource(address, visalib)\n",
" File \"C:\\Users\\jenielse\\source\\repos\\Qcodes\\qcodes\\instrument\\visa.py\", line 139, in _open_resource\n",
" resource_manager = pyvisa.ResourceManager()\n",
" File \"C:\\Users\\jenielse\\Miniconda3\\envs\\qcodespip310\\lib\\site-packages\\pyvisa\\highlevel.py\", line 2992, in __new__\n",
" visa_library = open_visa_library(visa_library)\n",
" File \"C:\\Users\\jenielse\\Miniconda3\\envs\\qcodespip310\\lib\\site-packages\\pyvisa\\highlevel.py\", line 2899, in open_visa_library\n",
" wrapper = _get_default_wrapper()\n",
" File \"C:\\Users\\jenielse\\Miniconda3\\envs\\qcodespip310\\lib\\site-packages\\pyvisa\\highlevel.py\", line 2858, in _get_default_wrapper\n",
" raise ValueError(\n",
"ValueError: Could not locate a VISA implementation. Install either the IVI binary or pyvisa-py.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connected to: Agilent Technologies B1500A (serial:0, firmware:A.04.03.2010.0130) in 0.11s\n"
]
},
{
"data": {
"text/markdown": [
"**Note: using simulated instrument. Functionality will be limited.**"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Note: If there is no physical instrument connected\n",
"# the following code will try to load a simulated instrument\n",
"\n",
"try:\n",
" # TODO change that address according to your setup\n",
" b1500 = KeysightB1500(\"spa\", address=\"GPIB21::17::INSTR\")\n",
" display(Markdown(\"**Note: using physical instrument.**\"))\n",
"except (ValueError, VisaIOError):\n",
" # Either there is no VISA lib installed or there was no real instrument found at the\n",
" # specified address => use simulated instrument\n",
" b1500 = KeysightB1500(\n",
" \"SPA\", address=\"GPIB::1::INSTR\", pyvisa_sim_file=\"keysight_b1500.yaml\"\n",
" )\n",
" display(\n",
" Markdown(\"**Note: using simulated instrument. Functionality will be limited.**\")\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'spa'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"station.add_component(b1500)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## High Level Interface\n",
"\n",
"Here is an example of using high-level interface.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Identifying and selecting installed modules\n",
"As mentioned above, the B1500 is a modular instrument, and contains multiple cards. When initializing the driver, the driver requests the installed modules from the B1500 and exposes them to the user via multiple ways.\n",
"\n",
"The first way to address a certain module is e.g. as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1 # first SMU in the system\n",
"b1500.cmu1 # first CMU in the system\n",
"b1500.smu2 # second SMU in the system"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.cmu1.phase_compensation_mode()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The naming scheme is - `b1500.`, where number is `1` for the first instrument in its class, `2` for the second instrument in its class and so on. (*Not the channel or slot number!*)\n",
"\n",
"Next to this direct access - which is simple and good for direct user interaction - the modules are also exposed via multiple data structures through which they can be adressed:\n",
" - by slot number\n",
" - by module kind (such as SMU, or CMU)\n",
" - by channel number\n",
"\n",
"This can be more convenient for programmatic selection of the modules."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instrument modules are installed in slots (numbered 1-11) and can be selected by the slot number:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.by_slot"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All modules are also grouped by module kind (see `constants.ModuleKind` for list of known kinds of modules):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.by_kind"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For example, let's list all SMU modules:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.by_kind[\"SMU\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lastly, there is dictionary of all module channels:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# For the simulation driver:\n",
"# Note how the B1530A module has two channels.\n",
"# The first channel number is the same as the slot number (6).\n",
"# The second channel has a `02` appended to the channel number.\n",
"b1500.by_channel"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note: For instruments with only one channel, channel number is the same as the slot number. However there are instruments with 2 channels per card. For these instruments the second channel number will differ from the slot number.**\n",
"\n",
"**Note for the simulated instrument: The simulation driver will list a B1530A module with 2 channels as example.**\n",
"\n",
"In general, the slot- and channel numbers can be passed as integers. However (especially in the case of the channel numbers for multi-channel instruments) it is recommended to use the Python enums defined in `qcodes.instrument_drivers.Keysight.keysightb1500.constants`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Selecting a module by channel number using the Enum\n",
"m1 = b1500.by_channel[constants.ChNr.SLOT_01_CH1]\n",
"\n",
"# Without enum\n",
"m2 = b1500.by_channel[1]\n",
"\n",
"# And we assert that we selected the same module:\n",
"assert m1 is m2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Enabling / Disabling channels\n",
"\n",
"Before sourcing or doing a measurement, the respective channel has to be enabled. There are two ways to enable/disable a channel:\n",
" - By directly addressing the module\n",
" - By addressing the mainframe and specifying which channel(s) to be enabled\n",
"\n",
"The second method is useful if multiple channels shall be enabled, or for programmatic en-/disabling of channels. It also allows to en-/disable all channels with one call."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Direct addressing the module\n",
"b1500.smu1.enable_outputs()\n",
"b1500.smu1.disable_outputs()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enabling via the mainframe\n",
"\n",
"# enable one channel\n",
"b1500.enable_channels([1])\n",
"\n",
"# enable multiple channels\n",
"b1500.enable_channels([1, 2])\n",
"\n",
"# disable multiple channels\n",
"b1500.disable_channels([1, 2])\n",
"\n",
"# disable all channels\n",
"b1500.disable_channels()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Perform self calibration\n",
"\n",
"Calibration takes about 30 seconds (the visa timeout for it is controlled by `b1500.calibration_time_out` attribute)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.self_calibration()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Performing sampling measurements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This section outlines steps to perform sampling measurement. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set a sample rate and number of samples. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Number of spot measurments made per second and stored in a buffer.\n",
"sample_rate = 0.02\n",
"# Total number of spot measurements.\n",
"nsamples = 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Assign timing parameters to SMU. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1.timing_parameters(0, sample_rate, nsamples)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Autozero is generally disabled for sampling measurement. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.autozero_enabled(False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set SMU to sampling mode. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1.measurement_mode(constants.MM.Mode.SAMPLING)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SMU is configured with by assigning voltage output range, input output range and compliance. While forcing voltage, current should be the compliance and vice versa.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1.source_config(\n",
" output_range=constants.VOutputRange.AUTO,\n",
" compliance=1e-7,\n",
" compl_polarity=None,\n",
" min_compliance_range=constants.IOutputRange.AUTO,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the averaging to 1 otherwise the measurement takes 10 times more time. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.use_nplc_for_high_speed_adc(n=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the voltage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1.enable_outputs()\n",
"b1500.smu1.voltage(1e-6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are now ready to start the sampling measurement. We first initialize the database and create-new/load-old experiment. Then we register our dependent and independent parameters and start the measurement. \n",
"\n",
"**Note** that the default values of label and units are not defined for the parameter sampling measurement trace. Hence we first set them according to what is being measured: in this case we will measure current in A. It is important to set the label and the unit before the measurement in order to have this information when looking at the acquired data, for example when plotting it with `plot_dataset` as shown below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1500.smu1.sampling_measurement_trace.label = \"Current\"\n",
"b1500.smu1.sampling_measurement_trace.unit = \"A\"\n",
"# Automatic assignment of the label and unit based on\n",
"# the settings of the instrument can be implemented\n",
"# upon request."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"initialise_database()\n",
"exp = load_or_create_experiment(\n",
" experiment_name=\"dummy_sampling_measurement\", sample_name=\"no sample\"\n",
")\n",
"meas = Measurement(exp=exp)\n",
"meas.register_parameter(b1500.smu1.sampling_measurement_trace)\n",
"\n",
"with meas.run() as datasaver:\n",
" datasaver.add_result(\n",
" (\n",
" b1500.smu1.sampling_measurement_trace,\n",
" b1500.smu1.sampling_measurement_trace.get(),\n",
" )\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thanks to the `label` and `unit` set above for the `sampling_measurement_trace` parameter, the `plot_dataset` function is able to produce a plot with a useful label for the vertical axis, see below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_dataset(datasaver.dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check compliance: For the values which are compliant the output is one and for others it is zero. A quick to visualize of your measurements are compliant is to plot the compliance data and look if any value of zero."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_compliance = b1500.smu1.sampling_measurement_trace.compliance()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.plot(data_compliance)\n",
"plt.xlabel(\"Measurements\")\n",
"_ = plt.ylabel(\"Compliance status\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The channel number of the measured data can be obtained in the following way. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_channel = b1500.smu1.sampling_measurement_trace.data.channel\n",
"data_channel[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you want to know the type of the measured data, for ex 'I' or 'V' the following method can be used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_type = b1500.smu1.sampling_measurement_trace.data.type\n",
"data_type[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The measurement status can be obtained using:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_status = b1500.smu1.sampling_measurement_trace.data.status\n",
"data_status[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The variable 'data_status' is a list of strings of measurement status for each data point. One can look at the meaning of the statuses in `constants.MeasurementStatus` class. It enlists meaning of all possible measurement status. For example: in case the measurement status is 'C' its meaning can be found as following."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"constants.MeasurementStatus.N"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"constants.MeasurementStatus.C"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### CV Sweep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"MFCMU has two modes of measurement. The first is spot measurement and this here is sweep measurement. As the name suggest sweep measurement execute the measurement once for the whole list of voltages and saves the output in the buffer untill measurment is completed.\n",
"\n",
"The function below sets up properly the parameters to run the sweep measurements. Look at the docstring of ``setup_staircase_cv`` to know more about each argument of the function. "
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"b1500.cmu1.enable_outputs()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"b1500.cmu1.setup_staircase_cv(\n",
" v_start=0,\n",
" v_end=1,\n",
" n_steps=201,\n",
" freq=1e3,\n",
" ac_rms=250e-3,\n",
" post_sweep_voltage_condition=constants.WMDCV.Post.STOP,\n",
" adc_mode=constants.ACT.Mode.PLC,\n",
" adc_coef=5,\n",
" imp_model=constants.IMP.MeasurementMode.Cp_D,\n",
" ranging_mode=constants.RangingMode.AUTO,\n",
" fixed_range_val=None,\n",
" hold_delay=0,\n",
" delay=0,\n",
" step_delay=225e-3,\n",
" trigger_delay=0,\n",
" measure_delay=0,\n",
" abort_enabled=constants.Abort.ENABLED,\n",
" sweep_mode=constants.SweepMode.LINEAR,\n",
" volt_monitor=False,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If the setup function does not output any error then we are ready for the measurement. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting experimental run with id: 2330. \n"
]
}
],
"source": [
"initialise_database()\n",
"exp = load_or_create_experiment(\n",
" experiment_name=\"dummy_capacitance_measurement\", sample_name=\"no sample\"\n",
")\n",
"meas = Measurement(exp=exp)\n",
"\n",
"meas.register_parameter(b1500.cmu1.run_sweep)\n",
"\n",
"with meas.run() as datasaver:\n",
" res = b1500.cmu1.run_sweep()\n",
" datasaver.add_result((b1500.cmu1.run_sweep, res))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ouput of the ``run_sweep`` is a primary parameter (Capacitance) and a secondary parameter (Dissipation). The type of primary and secondary parameter depends on the impedance model set in the ``setup_staircase_cv`` function (or via the corresponding ``impedance_model`` parameter). The setpoints of both the parameters are the same voltage values as defined by ``setup_staircase_cv`` (behind the scenes, those values are available in the ``cv_sweep_voltages`` parameter). "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"([,\n",
" ],\n",
" [None, None])"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAEWCAYAAAAXa4wFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9d5gkV3ku/n5dnWZ64s7ualersAqggJCEJEQGITAgGZl0sY0xydcIY3yxdLEx+UomWsYE/8jBMiAQWYAACYGMAEkISauc0EqrTdo0Mzuxe7q7wvf745xTdaq6qrt6tnund+a8zzPPdFdXOHXq1PnO+0ViZhgYGBgYGBgAmaVugIGBgYGBQa/ACEUDAwMDAwMJIxQNDAwMDAwkjFA0MDAwMDCQMELRwMDAwMBAwghFAwMDAwMDCSMUlyGI6DlE9MelbkcaENE5RLRzqduxXEBE80R07FK3w6A3QERvIaJPLXU7ugEi2khETETZFPv+GRF9O815WwpFItpKRAvyZdtDRP9NRANpTn4gIKJdRNRHROcS0Q+17WuJ6Er5+wwR3URET9N+fz4R3UtE00Q0SURXEdEG7ffLiGgHEc0S0TYiem/kuqcT0SYiqsj/p7fRZr2v1N9nDrQv2gUz/46ZTzjY121nkBp0B8w8wMxbAEC+qx9a6jYZdB5E9EYiurHFPnkA7wPw7wenVb0LZv4JgFOI6NRW+6Zlihcw8wCA0wE8BcC7D6B9LUFERwKYYOYFAGcCuEP7eQDAbXL7KgBfA/AzTVA/AODFzDwC4HAAmwF8Xjv+qwBOZOYhAM8E8FdE9Ep53TyAHwO4AsCoPPeP5fa0uEBOTOrvH9q59wOFEUgGBt3BIfhuvQzAQ8z8+FI3pEdwJYALW+7FzE3/AGwF8ELt+2UAfiY/nwNgZ9L+AC4B8F0AXwcwB+B+AGeluOYrAFwuP38HwPkt9p8FcGbM9gKAjwJ4IOG4DQDuBfBO+f1FAB4HQNo+2wG8pFWb4/oq8tvnAXxf+/5vAK4HQKofAbwHwIQ8z2sj9/Fx2Za9AL4AoE9/BgD+BcAeAN+IPhd5vn8GcA+AMsTC4DAA18jn8isAo9r+TwdwM4BpAHcDOEf77QYAHwRwkzz2OgCrtb5iAPPy7xkx/dAH4L8BTEEsYP450lYGcLz2/b8BfChyr+8EsA/AbgAvB3A+gIcB7AfwHu3YSwB8D2KRMyef9RMhFnX7AOwA8CK576sBbIq09R0AftTimfcB+A8A2wDMALhRezbfk89kBsBvATwpcl9fAPBL2bbfADha+/3Tsn2zADYBeI72myXHyqPy2E0AjtT7D+LltwHU5bO4Wv7+Lu24BwC8QjvvG2X7Py6fz2MAztN+XwXgcgC75O8/0n57KYC75Ji5GcCpKd+XTo3LNwF4UB63BcBbtN9WA/ipPG4/gN8ByLQx3vR3K6P14STE/LZK7r9Rnu9N8tlNAfg7AE+V9zgN4DORPvgb2e4pAL+IjAGWx2+Wv38WYr44CUAVgCuf7XRC//4XgPdp31X73gDxrk4AeG9knvmUfL675OdCwrmPhxizM/I830k5di9ByndSm28+CuBWea0fx/R3Vn4fhhhDuyHm8Q8BsLRzPQvAYy3HZTsTPYAj5E18Wh80Tfa/RD688yFe5I8CuKXJtf6fHDhVABX52ZWdMa3foHbM6XL/YW3bUXJ/D2JieGPkmHfJwcQQL9ARcvvFAK6J7PtTAO9o1U/Re4/5rR9i4n4jgOfIgaSuew4AB8An5MB8HsQkcYL8/VMAfgIxKQ0CuBrARyPH/ps8ti/6XGS7boGYcDbIwXcHBOsvAPgfAP9P7rsB4mU/H2IC+BP5fY02SB+FGMh98vvH4gZpQj98DGJSWgXgSAD3oT2h6AD4AIAcgDcDGAfwLdkvT5Jj4djI+HsxgCzE4uwxAO/Vjn9MmxD2AzhJu/adAF7V4pl/VvbBBogx/kzIiQRiwhtEMNncFbmvOQDPlb9/GsCN2u9/DWBMtvsdEJNyUf72zxDv4QkQk+RpAMai/af3nXbeV0NoUDIA/gJinK2Xv70R4n15s7yXt0JMjiR//xnEInVU9t/z5PYzIMbU0+Rxb4AYc7ETapfG5Z8COE72x/Mg5o8z5G8fhViA5OTfc7R7SjPe9HfrItnmI+S2LwK4MjL+vwCgCLHIrgL4EYC12j2qfns5gEcghFwWQtV5c+Rd+CmAEYg5bRxygS6f1Y0t+vc2AK/Wvqv2fVney2kAapBjHsC/yntbC2ANxALkgwnnvhLiPcrIe312yrF7CVK+k9p88ziAUwCUAPwAwBVx843s5y/K/dZCCFJ9cbRK7j/UtN9STvTzEC8wQ7CbEW3QtBKKv9J+OxnAQovrZSFWTusgJpifNdl3CGJyeHfC76sgVnlPj/mNIF6+SwEMym3vB/DtyH7fBHBJq36K9NW09vdm7fezISbebQBeo20/B+LlK2nbvivbQxAT13Hab89AMJmfA8EGipHzRYWizjx/AODz2vf/A7nql/31jch9/QLAG7RBqq8+/x7AtXGDNKGPtkBj3hCMph2huAC5OIIQOAzgadr+mwC8XBt/v9R+u0A+n+jxajx/HsCH5ecnQazOEyd2iAlhAcBpKcbGiLzWsHZf39Z+H4BYAB6ZcPyUug6APwJ4WcJ+TYVizP53qXNBTLSPaL/1y/OtA7AeYpE5GnOOzyMyeco2Pi/F+9KRcRlz7h8B+Ef5+V8hGMbxMfu1Gm/Rd+tBAC/Qvq+HWEhkEYz/DdrvkwD+InKPF8nP1wD435HxVIFki/JcurD5LoB3ac+qlVDcjPC7ptp3hLbtVgB/KT8/Ck0rByG4tiac++sAvqSfq0k79LF7Cdp7J2+AXHTL7yfLZ2Jp95OFWFjVILU0ct/XAPi19j0n9z+qWXvT2hRfzsyDEIPkRAh1RFrs0T5XABTjdPPSwWUaogOPB/AQgF8DOEc6zbwysn8fBGO6hZk/GndhZt6PwC6YjfzGzHwnxKR2qdw8DyFodQxBLAjS4uXMPKL9fVm75q0QQoEgBriOKWYua9+3Qazo10BMTptkP0wDuFZuVxhn5mqLdu3VPi/EfFc22aMBvFpdS17v2RAvv0L0mbbjeHU4hIpEYVsbxwLAJDO78vOC/J90L3G/TcQcr/b/GoSNmQC8DsB3mbnWpC2rIVbJj0Z/ICKLiD5GRI8S0SyEAFDHKPj9wMzzEAumw+Xx7yCiB6Uz2TSEakgde2TcNdOAiF5PRHdpz/aUSJv8Z8vMFflxQF5zPzNPxZz2aADviIyZI9W9tEBHxiURnUdEtxDRfvnb+dp9/TsEI7uOiLYQ0btStEsh+m4dDeAqrQ0PQixmDlvkPX1aO9d+iLlhg7b/gbxrUxBCJoqkcx6O8Puo5qA4vFO29VYiup+I/kb90GLsAu29k0DjfJFDoww6Wm7frfXnFyEYo4Lqi+mEewLQZkgGM/8GYiX1cbmpDDFhAxATAcKTdTvnvouFc8yHAXxAfn4AYoUxwsy6B2oBYiX4OIC3tDh1FqJjosJO//04+fl+AKfKSVHhVLn9gEFEb4NQueyCGFQ6RomopH0/Su43ATFQnqQJ2mEWjk8K3In2SeyAWJHrgr3EzB9LcWyaduyGmDAVjor8XoE2piBYykEBM98CsQp9DoC/grAhNcMEhCrouJjf/grC0eGFEJPCRrldH1t+P0hHsVUAdhHRcyCY0Z9DMLMRCBOCOnZHwjUbbkn/QkRHQ6jO/gFC3ToCob6mmGOj2AFgFRGNJPz24ciY6WfmK1OcNy0Sx6WcD34AMS8dJu/r55D3xcxzzPwOZj4Wgpn8XyJ6gTxvq/EWHdM7IOysejuKvDhnlh0Q6j39XH3MfHOKY9O8a/dAmDnSYheEcFFQc1DjxZn3MPObmflwiDn4c0R0fIqxuxhE5wsb4t3TsQOCKa7W+nKImZ+k7XMSBPOdbXaxxcQpfgrAn8hQhYchmN+fElEOQideWMQ5dZwJ4A7p8bkBkRWxvM73IQTF65nZi/z+SiI6gYgyRLQGwk53JzPvl9veQkSjJHA2gLdBqIQBQdVdAG8nogIRKc/R/5HnPoeIFiWAiOiJEIbfv4ZgIe+MCfe4lIjycmC9FMD35P19GcAniWitPNcGInrxYtqRAlcAuICIXizZTlHe9xEpjh2HULE1i5P7LoB3y2dwBISKTMddEGzNIqKXQNiHDia+DuAzABxmburyLp/NfwH4BBEdLtv8DDlJD0K8pJMQk+5HYk5xPhE9W471DwL4AzPvkMc6EP2ZJaIPILyo+wqADxLRE+Q4PpWIxmLOvxfhZ1GCmEzHAYCI3gTBFFuCmXdDqPs+J59djoieK3/+MoC/I6KnyfaU5JwQx1IWi2bjMg8x74wDcIjoPAh7HuR9vlRO2ATh/OHKP6D98fYFAB+WCwwQ0Roietki7+kLEO/Ck+S5hono1SmP3QvgCGruGf9ztPf+XAngffKeVkPY7q+I25GIXq3NCVMQ48pF67G7GPw1EZ1MRP0QqvDva8wSgD8+rwPwH0Q0JOf644hIv//nQYzhpmhbKDLzOMTE8X5mnoGwKX0FgrWVIby1DgQqBOPJAO5lqQzW8EwIgfEiANMUxAM+R/6+AUK9qDybPAhvVoVXIPC+uwLA/yf/wMx1COP36yEo9t9AqEPr8tgjAfy+RfuvpnCc4lUkVLdXAPg3Zr6bmTdDeA9+Q06ggFBpTEGszL4J4O+Y+SH5279AqH9uIaGK+xWEk0XHISfll8n2jUOswP4ZKcaKVLd9GMBNUoXx9JjdLoVQgTwGMYijbOwfIVbz0wBeC6EROJj4BoSgaMUSFf4JYpzdBqH++jeIvvo6xH0+DqHxuCXm2G9BOJfthxj3r5XbfwHx8j4sz1FFWIX0CYjFxXUQk/xXIRwnovgqgJPls/gRMz8A4Sn7e4hJ9ckQXsRp8TqIVfpDEA4jFwEAM98O4SDxGYgx/AiEzatjaDYumXkOwNsh+mQKgqX/RDv8CRDvzDzEvX+OmW+Qv7U73j4tz30dEc1BPNenNT8k8Z6ughgv35bv9X0Azkt5+P9AaLD2EFGUNSlcDeBEIkqjxgbEov12CIZ5L8Q8nBTn+lQAfyCieYj++Edmfgytx+5i8A0IDeUeCHPF2xP2ez3EAukBiHHwfYTNPq+BUKk2BTXKHIMkENFXINjbLzp83nMgPKrSsDGDLoKErXofhOfi5i5e578hHIze161rGBgQ0YUATmbmi5a6LYsBEd0AMTd+5QDPcwGA1zHzn7fa91ALRl1SMPPfLnUbDLqOtwK4rZsC0cDgYIGZv7TUbegFMPPVEMy5JYxQNDCQIKKtEA4BL49svx9hBwSFtzDzNw9C0w5JENFREKqsOJzMzNsPZnsMDNLAqE8NDAwMDAwkTJUMAwMDAwMDiRWlPl29ejVv3LhxqZthYGBgcEhh06ZNE8y8qBj0Qw0rSihu3LgRt99++1I3w8DAwOCQAhG1m3nqkIVRnxoYGBgYGEgYoWhgYGBgYCBhhKKBgYGBgYFETwlFItpKRPeSyOJ/u9x2Oons93cR0e0yXylk7sWvyf0fJKJ3L23rDQwMDAwOdfSio83zmVnP5XcZgEuZ+RoiOl9+PweiWGqBmZ8sE8U+QERXMvPWg95iAwMDA4NlgZ5iiglgBFnWhxGUMmEAJZlsuw+i5E/TkiAGBgYGBgbN0GtMkSGyzzOAL8q8fRcB+AURfRxCiD9T7vt9iKz5uyFK81wsiwqHIBPiXggARx0VLd1nYGBgYGAQoNeY4rOY+QyI8ilvk/Xa3goh8I4EcDFEORwAOBuiftfhAI6BqPzdUMePmb/EzGcx81lr1qyI2NNDFnNVGz++azG1Wg0MDAw6g54Sisy8S/7fB+AqCMH3BgA/lLt8T24DRM20a5nZlvvfBOCsg9tig07imvv24B+/fRd2zywsdVMMDAxWKHpGKMpq3YPqM0QR4fsgbIiqevK5AFRJn+0AzlWVvgE8HaL4qcEhiprtyv/eErfEwMBgpaKXbIqHAbiKiADRrm8x87WysvOnpUNNFdI+COCzAC6HEJwE4HJmvufgN9ugU7BdUbHF8YxQNDAwWBr0jFBk5i0ATovZfiOAM2O2z0OEZRgsEyhhqISjgYGBwcFGz6hPDQyUMHQ9IxQNDAyWBkYoGvQMbNcL/TcwMDA42DBC0aBn4Pg2RcMUDQwMlgZGKBr0DAxTNDAwWGoYoWjQM/C9T42jjYGBwRLBCEWDnoHyPjWONgYGBksFIxQNegZGfWpgYLDUMELRoGdgG0cbAwODJYYRigY9A8cwRQMDgyWGEYoGPQPjaGNgYLDUMELRoGegGKJxtDEwMFgqGKFo0DNQtkTbJAQ3MDBYIhihaNAzUEzRqE8NDAyWCkYoGvQMTEiGgYHBUsMIRYOegcl9amBgsNQwQrEHUa45qNSdpW7GQUegPjVM0cDAYGlghGIP4u1X3ol3//DepW7GQYcJ3jcwMFhqZJe6AQaN2DdXQ6XuLnUzDjpU7lPjaLMyUHNc5K0MiGipm2Jg4MMwxR6E47EvIFYSFFM0IRnLH7NVG0/511/iNw+PL3VTDAxCMEKxB+F6HuorkC2ZkIyVg5mKjUrdxY79laVuioFBCEYo9iAcl1eks4lxtFk5UHbjBXvlmQkMehtGKPYgHI9XJFsyIRkrB65UkVdtswAy6C0YodiDcD1ekQHsRn26cqDsx1XDFA16DEYo9iBs11uRzibG0WblwF3B6tNtk2U8sm9+qZthkICeEopEtJWI7iWiu4jodrntdCK6RW0jorO1/U8lot8T0f3yuOLStb5zcD2G7aw8tmRCMlYOlIp8JapPP/jTB/CeFRiHfKigF+MUn8/ME9r3ywBcyszXENH58vs5RJQFcAWA1zHz3UQ0BsBegvZ2HI7HIFpZkwUza8H7K+veVyICm+LKY4rzNQez1WUxVS1L9BRTTAADGJKfhwHskp9fBOAeZr4bAJh5kpmXxRvmuJ4vIFrh0fH5ZVF/UHeuMUxx+cNZwTZF22XUHLPw61X0mlBkANcR0SYiulBuuwjAvxPRDgAfB/Buuf2JAJiIfkFEdxDRO+NOSEQXSrXr7ePjh0agsJPS0WZivoYXffK3uO7+PQehVd2FLgiN9+nyh+utZKHoobYC7/tQQa+pT5/FzLuIaC2AXxLRQwD+F4CLmfkHRPTnAL4K4IUQbX82gKcCqAC4nog2MfP1+gmZ+UsAvgQAZ5111iEx27oeg1O0dK7qwPUYE/O17jeqy9Cda1ai5+1Kw0qOU6w7nmGKPYyeYorMvEv+3wfgKgBnA3gDgB/KXb4ntwHATgC/YeYJZq4A+DmAMw5uizsPZhZM0fPALSSjCnJfDhOLrU0SRn26/OGuYEcb2zVCsZfRM0KRiEpENKg+Q9gM74OwIT5P7nYugM3y8y8AnEpE/dLp5nkAHji4re481GTBjJa2Qn+1XT/0X7CQTbEHHG2E48/St2O5wlnB6lPHY9SclXffhwp6RigCOAzAjUR0N4BbAfyMma8F8GYA/yG3fwTAhQDAzFMAPgHgNgB3AbiDmX+2JC3vIMLCoRVTXD4qKF0A9YJN8cZHJnDapddhZsF4CXYDvep9ysz46o2PYc9MtWvXsB3hSLccHOSWI3rGpsjMWwCcFrP9RgBnJhxzBURYxrKBLhBs10MxZzXZtzcnlsVA97btBfXpjv0LqNRdzFRsDPfllro5yw5BRpveYuPj8zV88KcPIEPAm551TFeuoZL91xwX/fmemYINJHqJKRoAcF1dKKZVnx76QlFPAt4LakvFZHpBlbsc0asZbWalZqCbLE6N71qPLQgMBIxQ7DHok3CrahHLS30q7sXKUE+oT1UbeqEtyxG9alNU6vJuPndfKBpnm56EEYo9hpD6tKWjzTLyPpUTRV/O6onSUX7Fjh5Q5S5HKCZeczx4PbTwmDkITHElJy44FGCEYo8hJBRbrCR7dbW9GCgB35e3eoKdqTYYZ4juQH/GvcSYZhccAN177syMumGKPY2OCkUiegYRfZaI7iGicSLaTkQ/J6K3EdFwJ6+1XOGGMrukVJ8uA5uiUp8Wc5meYGfGpthd6EKnlxZ13WaK4cVA79y3QYCOCUUiugbA30LED74EwHoAJwN4H4AigB8T0Z916nrLFXpml3qLShnuclWf9oAgUkLaMMXuQF/4VHtIOHRbKOpOZIYp9iY66Q/8ukh1CwCYB3CH/PsPIlrdwestS7htBLHby8jRRk2Sffks7NmlT1vnGkebrkIf572k6fC9T9PkWVwE9JJwxvu0N9FJ9enxrXaIEZoGEThthGT4qbJ6aFJZLAKmmOkJRxvF2A1T7A6ckPp06Z+3QteZorbQ7SW1sUGATgrFz6kPRPT7Dp53RcFpIzG2vZxynyqmmOsNRxtl2+2FmMnlCH3hY9SnBr2ETgpF0j4XO3jeFYV26gr2agD0YmC8T1cWQkyxhzQdqvhv14SiYxxteh2dtClmiGgUQtCqz76gZOb9HbzWsoX+MtqtbIpapQHPY2Qy1HT/XkbgfWrJ0lkMoqW7H8f3PjVCsRsIeZ/2kHCY6XJIRt0wxZ5HJ4XiEIBNCAThHdpvDODYDl5r2UJXr7SKU3QjL1hfPjlPaq9D9z4V3xn57NIJRfcgM8WlXgQcbDghR5veEQ5dd7RxjU2x19FJ9enrmPlYACcx8zGRPyMQUyLsfZou9ylw6KtQlY2pXwr2pQ7LUMz1YDBFZsZzLvs1rrx1e9ev1Stwe9ThxBeKXYqVNTbF3kcnheKn5f+bO3jOFYdolYy0+x7qQlF3tNG/LxUCptj9iWu26mDn1AIemyh3/Vq9AqcH1aeux5irSfVp15iiCcnodXRSfWoT0eUAjiCi/4z+yMxv7+C1li3aCcnQPfh6KdZrMVALgKJkikvt4KIm7YMhnCfnRVxmLzGmbsP1GFaG4HrcM2N3rhrUzjw43qfdue87tk/hHd+9G1f/n2djoGBKU7WLTvbYSwG8EMC5ELZFg0XAbadKRo+myloM1L0oprjUsYrq+gdDOE+W6wAO/YVNO3A8xkAhi5kFu2fUiHpB6UM5JGPz3jk8NlHG3tkqBtYMdOUayxkdE4oyMP/bRPQgM9/dqfOuNLRVJcNdTurTiKNNjzDFg2FT9JlijwiHgwHXZRRzGcxVe2dBFxKKh7CjjdJu1FfQeOokOpn79H1EtCpJIBLRuUT00k5db7kipD5NWSUDOPRZhu16sDKEnCWG5FIzRd+meBDaMTG/MpliNpNBMWf1zH2rChlA9xxt6qE4xe6MLTV2e4WBH2ropPr0XgBXE1EVIhxjHCKI/wkATgfwKwAf6eD1liVCwfstq2RoNkXbxcN753D0WD8K2UMvNMNxGdkMIWuJsISldrRRK/qDwxSFUFxJwdyO5yFrEYo5q2ccbRRTzGaoa0xRf6e7JbTUmDVMcXHoGFNk5h8z87MA/B2A+wFYAGYBXAHgbGa+mJnHO3W95Qo3lOYtfUjG7ukFnP/p3+Hqu3d3rW3dhO0y8lbGZ4pL7WhzMOIUt09WUHNcTJaF+rRXGNPBgCMdbfpyVs/EKSqhONKf77pNsS9nodYl9alaLK+kRVYn0XHXJGbeDGBzp8+7UtBeSEbw++Z983A8xnSl3rW2dRO2K5iDlSH/+1LC6XKc4nzNwYs+9Rv804tO8JlirzCmgwFXagaQy/TMfasUb6tKua6neRsoZrtmQzZM8cDQ0SLDBgcO3aaYJvdpTqobVYxb/RBNYC3UaRn/fpY6vZqf5q1Latwt4/Oo2h7u3zWLifn2meJ8zekZB5XFQDDFDIrZ7jGmdjGzYCNnEQYK2a6neRssZLvIFI1N8UBghGKPoR2maLuMwWIOQCAU7RaFiXsVSn2azfSYo02Xgve3jJfl/3k/JKOdEkpv/trtuOQn93elbQcDruchZxH68lbPeE7PLtgYKuaQzWS6rj4dKGa76GgjzmuY4uJgIjt7DGpAZyhdPcX+vIX9ZWD3TBXA0qsdFwulPu0dR5vuqk+3jM8DAB4dL/v33A7z276/gmLu0F3TKptiMZfpej1FlSigFRZsF8WchUymeyEZisUNFLKYqtgt9l4cbN/7tDcWG4caOv5WEdETieh6IrpPfj+ViN6X8titRHQvEd1FRLfLbacT0S1qGxGdHTnmKCKaJ6J/6vS9LAX0ahGtvE9t10PeyvixfWrboQjf+zSzMhxtHpVMcb7mYFpOju0IxbmqnVpgLzXrjoPrieddzFpdVQM/NlHGie+/Bo/sm2+5b83xUMxlusoUlfp0oJDtmtAyIRkHhm4sNb8M4N0AbABg5nsA/GUbxz+fmU9n5rPk98sAXMrMpwP4gPyu45MArjmwJvcO1IAu5qyWAk6tgPXqGIfqi1B3PeSsTMAUlzgheLdLRz06Po+S9txG+nNYsF1wCobiyRydaeyd2ycrePIl1+G7t+04oPZ2Gj5T7LL6dOdUBbbLeHx6oeW+NZ8pUvfVp4Vs13KfqmsY9eni0A2h2M/Mt0a2ObF7pgNDlKUCgGEAu9QPRPRyAFsgQkCWBdQkXMhmWqoQbZeR7SGm+INNOzFfW9yjdqRQzPk2xe4yRWbGSz71W/xg08749nSRKXoe47GJMs45Ya2/7YjRPnicTm1crjtgTldJ5Op7dmHBdvGBn9yHzXvnDqjdnYSrgvezVlPhcP6nf5f4jNJAnTsNW67aHoo5CxZ1N81bVi4GDFPsTXRDKE4Q0XEQwgxE9L8ApA2eYwDXEdEmIrpQbrsIwL8T0Q4AH4dgoSCiEoB/AXBpsxMS0YVS7Xr7+Hjvh0kK4SAyu7R6kV1PvmCabWmphOLj0wt4x/fuxk/u2tV65xg4Hodsit1W+S3YLh7aM4fNCWq1ICSj8+14fHoBNcfDM48f8xc0G0b6/Ha1wlxVLDzSCNBr79uDJ6wdwEAhi3f98N4DaHVnEbYpxt8zM+OB3bP44wEIc6WuTNNXVdtFIZuB1VVHGzHOWy0GDvQagBGKi0U3hOLbAHwRwIlE9DiEUHtrymOfxcxnADgPwNuI6Lny2IuZ+UgAFwP4qtz3UgCfZOamxgJm/hIzn8XMZ61Zs2YRt/VPpDIAACAASURBVHNwoVSiWYtSBe9nrbD6dKkcVJR7+Z7Z6qKOrzuSKfrq09b3MTFfw4s/+VtsXUTJJSVYklRM3QzJ2CLbe/yaARyzugQAOGK0HwBSuemrtrcS2Dv2V3Dv4zN41ZlH4C+fehTu2jHdM84XjmRMhayV+AzUEDgQm6O63zSLxaoj1KdWprtMMWdlUMhluu592ivP+lBDx4UiM29h5hcCWAPgRGZ+NjNvTXnsLvl/H4CrAJwN4A0Afih3+Z7cBgBPA3AZEW2FELzvIaJ/6NR9LBVUTsi8lWkdvC+dU3T16VLZEZS6cXyutujjcxbB8h1tWt/HlvEy/rh3Dg/tmW37eqpMUN2NnzjUpNgNm6LyPD1u7QCOWyuqGLTDFFWQeSuB/Yv79wAAzjtlHU5aPwTXY2ze29rh5GBALf7y2WThoIT+gQhF9T6kYfxCfSodbbqYEDxvZVDIZlB3va4IXxO8f2DohvfpR4hohJnLzDxHRKNE9KEUx5WIaFB9BvAiAPdB2BCfJ3c7FzJbDjM/h5k3MvNGAJ8C8BFm/kyn7+dgw9FCE1pNyL5dRheKS6Q+VQJ8fG5xTFEwh4zIcoL06i5gcRVCZlsyxe7ZFHdOLaAvZ2GslMdTN45i3VARa4cKANLFKiqB3mp83LZ1P45ZXcLRYyWctH4QAPDg7vYXEN2A0nIo4eDF3IuSYwcSsqEEbpr43ZrjopgVjjZx7ekEbIcFU5T5idsVXL99eBxv++YdTfcxwfsHhm6oT89j5mn1hZmnAJyf4rjDANxIRHcDuBXAz5j5WgBvBvAfcvtHAFzY5ByHHDyPcf+uGf+7I13VcymYoi2TKiumuGawsGQ2RfUiLpYp1l2W6tP0jjZKGC4md+aszHOZJHy7meat7njoy1sgIrzu6Ufjd//yfPRLFXg7NsVWdtcF28NQn0jucPRYCcVcBg/u7g1nG1dmtMlnxfOOW8x1kimm8Wau2h4KOQvZTOsFqY4P/fQB/OyedG4TtushlxWLAaB9FectWybxs3t3NxWmrmGKB4RuBO9bRFRg5hoAEFEfgEKrg5h5C4DTYrbfCODMFsdesrimLj1++eBevOUbm3DjvzwfR4z2+2qlXKa1UFSxXmKCBQ4f6Vs6oSgnnX2LVZ9KByPf0SbVJCYmlEq9fY/XtDbFbmS0EfZTcZ9EhJx0vADSCYDZlI42NdtFQS4yrAzhhHVDXWeKk/M1EBFWlfKYKtfhMWNsoPH1dzwPuYwuHLyQxgPQmOIBTO4BU0w3ngrZDOpOe2rN79+xE/srdfzpqetb7qtCj9S9tsvm1P4LdddfUESh5gDDFBeHbjDFKwBcT0T/m4j+BsAvAXytC9dZFtg5JeKnVAC37QqVaNailmzJdsVqe91wEcesLqE/l+y00G2oCXpivrYo1ZNQpwUhGe2oTxfDJJRQTJo4fJtiFxxtlLOFjmIbTFGx3FYLh5rjoaB5Jp+8fhAP7plNFQu5WFz0nbvwrh/cAwB49w/vxcXfja837rpi8VfIJasRO8EUa75NMYX6VIZkZNuMU6zU3NRtdFxGLpMJFgNtqoZVP1Xs5IWgH5LRI+nzDjV0w9HmMgAfBnASgCcB+KDcZhADv+q6HMCuVImmUZ+q/JEXv/CJ+MHfPRP5bAb1JfI+VcLDdhnTC+2nr1LsyZIMKg1DU7amxdgUlV0uro+Zuatp3urS2UKHYopteZ+2eNZ1x/MnXwA4af0Qpiv2oj2E02D3TBV75fl3z1YxVY6v2uLbFK1kNaJydjmQyV2dt5Wt3fUYdVc42mTaqKdYdzzUXS+13dNXn8rFSrsVQtT9VJokj1ee24dqcYClRldynzLzNVhGWWa6Cb9skB2saEUF+hQhGa6K9bJQzFlCkKZgisyMSt1FqdC5x6/bbPbNVbGqlG/reKFOa8/R5oBsisr7NKa/dDnYDaEYxxT72rIphgW6uoeoOq3mhFVsJ64TOTAe3D2L9cN9i2x9c8wu2PCkQJmv2g33qaDMBEo4xDF2xXgOxNHG9z5NsYAA0HZIhqpskrbCiVKfFvxF0OLVp0nwQzK6nFN2uaIb3qevJKLNRDRDRLNENEdEveHy1oNQBWYVU1TqlWwKm6IIYwgeYT5LqWyKV9+zG0//yPUdLWqrTzqLcbYRTg7tOdociPepb1OM6S+9D7thU7RdRi4bTlCtEjCkEQDKpqgm7rdfeSfe+f1GNWXd9fzJFwCOHhOxkI9Pd48pzizYmJftm685iYsKPfQIiF+c+ELxAOLtfJtii/dCjaVitr3cp2Vpz047Bv04xUU62tRSaEfUgtIwxcWhG0zxMgAXMPODXTj3ssNEpMCszxSzmZYsxXG9UPb/nJVJ9SI8vGcOczUHs1U7FPh/INA9IffNticUmRnlmoNSIQsrQyBKH1cm/h+AUGwyGQMHz6aoPIjTLFR8pijbuWsmPq9nzQ6raQeL4nUvLyIVX5pKE1XbRc3x/FR/81UnFEOrQ43dNEzxQBiP733a4jmq96+Qs5Ch9DZF5eSVdgzaLqNPanaAxTjatFafBmnejE1xMeiGo81eIxDTI2CKgbdj1iLkMq1Znwp4V8inVJ9OROyYnYCegWZ8vj2hWHM8OB5jQKpzhedteqa4OO/TZJuivhjpRpyiyt6jQ02SaVhRNCSj7niYibHj1t2wo01fzoKVIZ/JpcWP73ocZ37oly3Hi2pXpe6i7ngo190WTJGQt5IdbTrJFFuFr6j3r5gTTm6pmWKtPW2FikNWTLFdbU2gPk1+hk5ErW7QHrrBFG8nou8A+BEAf3Zk5h8mH7JyEdgUA6aYNk7RiazecykdbSbm2y9q2woHwhQVc1FVI6wMpXS0URPSYuIUk5mifi/dsin258Ovnpokq20wRY9FnKvtxgvFKFMkElXl1fFp8bWbt2K6YmNmwW4Im9Axq513n0zikMS0G22KMY42vk2x8bffPDyOI0f7cOyagaZtr6dM8xaoTyVTTOloo8ZuepuiMHko1j5Xa+9ZKKHYjCk6PlM0QnEx6AZTHAJQgchIc4H8e2kXrnPIo1J3/MGt2xTThmSoLDAKaVLDAd1hiqqteSvTNlNUq23l+JMm7ysQrM7TCJIo1ATeTG0X/dwp2G6Y4QNCYBVzmVQxeUqgA8LByfFYOLhE2hplioAoWTTXhvr0sYky7tgucnG0UmPqglkVvY5TgzOzv/hTi4FYpsiBo000jOSib9+Jz9/waMv2+zbFFs/RF4pthmSUI+9vK6g0b8MyqcJMm4WG21GfGqa4OHScKTLzmzp9zuUKxRKB4OX1g/dTMsVsyKZIqV4EJRQ7uZJU3qfrR4rY16bLv7JB+epTK9NW8H7HHW20CbEbyRDibIqAUG+2Y1MExGLEdjx4DMzXHQwVc3K7CEDXHW0AYVdspj4t1xy88fJb8ZdPPQqvOvMIXHXn4/5vSXliFWY1obhL1i+MW9yo7tUz2rRanOjB/VXbxVTFxmRCuIcO36bYYqyr6xdUSIbHYGYQNbejBjbFNkIyLPIzDc0stKfK9h1tmoVkmOD9A0I3vE+LRPQ2IvocEf2X+uv0dZYDJjRGpSZ4249TTFclw9Jtitl0TDGqsu0EFFNcP1xs2/tUefD5TDHTmiUDgdp0cblPk22Krts+U5wq1/Fnn7kR2ycrLfetux5yMdlIirnWVehdj1GuuxiS6jfHY19lrrMONSFGwzQGCtmmNS8/d8MjuG3rFD56zUPYX67jB5t2+udoNfHPasJ2j2KKTdK3CduacjhJVp8CYZaqxtdUpbVQTBu8r/q9kLVgSUGY5tErLUfd9VKVO7P9ajAZlPJWrNq7GdQiLpWjjQneXxS6oT79BoB1AF4M4DcAjgDQGwkXeww6UwyC9wX7y6ZgS47r+RlgAMWwuGlGmXLNCdSOnXS0kS/r4SN97QvFWlgoCpbcRkhGG+rTe3fOoFxzfMHQLJMKkF4obpko456dM6E8tklQKrQo+nKtq9ArlqfiQB3X8/ten2DVfRWiQrGYLBS3TZbx5d8+hidvGMbEfA0v++yN2DWzgL951jHinC0m/Tj1aZzaUvVpVlbJ0Nsbtx8QdrZRqQSTEgPoUOetS7vrX335Fjw+3eitG3W0iV4/CbqTVxrVty0zNwHAcF+ubaHYbkjGtskyXvuVWxZd/HslohtC8Xhmfj+AMjN/DcCfAnhyF65zyOCxiXKsG7zyPAW04H2Zuk14n3JiSi7PY3iMhpAMoHny4xA77aB6Ra3EDx/uw1zNaUtQqdV2oD5NF2/Zrvq0art45edvwn/+z2YwC/tnvFAM7KNpHW3UBJpm8hGVEhrVcoWclYKNiUl0VAlF6WgDhNWXTZligvr0qjsfh+15+MobzsLZx6zCjv0L+PtzjsPznijqkLayKerXb84URV9ZkdynUYSEovaMVSWW/SmEomKgjuvhkX3zuPnRSdy7czpxv6IMyYhePwlq7ALpFmdiQSTOP7QYoeiohWDrNG+2y/jDY/tx0yOTqTQYBgLdEIrqKU8T0SkAhgFs7MJ1Dhm86vM34yM/b4xSUV6go/05zfvU871Pxfdkl3YADSEZQHMD+0QMO+0EHI0pAu0F8KsFg6oUUUzBmID2meLMgg3bZfzu4QkAwNhAPpZZK9VtIZc+iNtJodZSSLYpJlehV/CFYn/eP1dzpthoU0xytFFxhYcNFfHhl5+Ct597PC564RM1u1+6tgEixRsQeMjqUOrptpiiJpAVU5ytOrFCd3yuhr//5ibMVe1QnKL6HCeAo442AFJ5oIaYYooxq9SngGCKs20LxTTep42q5qUqFHAoohtC8UtENArgfQB+AuABAP/WhescEqjaLvaX67jmvj0NL/DkfB2lvIWR/rzP2lROyGyLzC6uv9rWM9q0TqatM8VO2hzUNdePFAEELvlpEHW06cu3tq0BWpo3202V5Fo5qDwoixKPDQjBElULqr4tZK1UDj9AsEgpp4iZrCcIxTQ2ReUgpISi4wZ5WmdCTFGcJ8oUB4u5xJAMVXkeAJ5w2CD+74tOCGVfaeXENbsQBOvv0RIKRBd2PlMMZXZJzxT1kJ+4PLt3bp/Cz+/dgwd3z4Uy2qg+ibuW2lbMCkeb6PWTUG5XKLrs25NbqU89j/G+H92LP+4JrE++UGxyLb2/ldObEYrp0Q2heD0zTzHzb5n5WGZeC+C6LlxnyTAxX0tdaUAN+v3lOm59bH/ot8lyDWMDBRSymQabomKASapQtV1nir76tMkLEHbu8fD49AI+9NMHDjj0wPFEhpLDBoVQjDJF2/US3c+jNsX+vJWKcensIY2nnXIEUY9urCRKGkWFourbYi6TOqON6r9KLaUKLcbRJo1NUQlFJdD1/Wdi1KcNNsVCFlXbix0jNdtDMaZdzQSXjtkFG+uHiyAKlxCLLix8R5sM+dqNWKHICUJRW3DF2RXVuco1R2OKXiqmWNCZYhqboq4+bfHsmDm0IGolFPdX6rjilu342T27AAQexUBz7Yjjsv/M1HMwKd/SoxtC8Qcx277fhessCSbma3jGR6/H1SmLik5rguCa+/aEfpucr2NsIB9iCL5NUQm4pNJGbmCXUVACstmKPhwG4uLXD+3DV258DI9PxacKSwsRX0lYMygETbSu4td/vw0v+MQNsYuJ+bqDvBW456cNTajWXf/+04UyhFmczxSdeKZYzFmpbYpKyKSyKcbEKarrtWIbqqrKGlmjcDFCEYhP9VZ1PL+Uk460VeJnqzaG+3MYyGehP2bbZTiad6ajjV0ioUKNU83qfa/bv/WxNRWz0FL3Pl9ztIw27H+O05D4jjYHwBRbjUF1PmVTbCUUVXu3SnugLsybZXFyPM9fYKq+6ka6wuWKjglFIjqRiF4FYFgmBVd/bwRQ7NR1lho7pxZgu4xfPbA31f7KbXyslMe19+8J2Vcm5msYKxVQzGV8JwbHixbbjR/Mtu/W3qg+bbYqnJivYaiYRYbERKBerlYxaK1gy0wdq0p5WBlqYIq7phcwMV+PtWeJvKfBZNyXz6azKTouRmS8VzN1kkJUbbhaChbb9XDlrdv9ArxKwBWy6W2KPlOsO3A9xqd+9XAsM3Y9huuxn95MRyGXaelos3umCiJgw6iw3eoTcZxNscHRRmVSiXG2UUV249oFpGOKQ8Wcfw0Fx/XwwZ8+gLM/cj2uuXd3yPsUEP0c58Sjvyu1iPp03ZCYUuKcbYIAd40peq1tisrr22rD0aZSd6HWpa3GrFJz696nC7abuNhQ97xtstzQ7uZVMti3zytWbdSn6dFJpngCROaaEQSZbC4AcAaAN3fwOksKtVK/6ZGJVMV0FVN8wUlrMT5XCwUcz9ccDBWzgiE4gfrU0hxtkl6Y6MQCBI42rdSnqwcLPitR3nMHmvLNkfGVVoYwVso32BSVOjRO3VWuhctY9eUyLVfdIhSBfS/MdpiimjDGSgFTvOQn9+Nbf9gOIMoUUwZl+zZFFw/tmcWnfrUZv9k83riffDbRKhmAYMitmOLe2SpWDxR8252uZp6OsSk2ONrIfo5jtFXbjU3jFjhwNW/bzIKN4b6cz0YVHI+xY2oB+8t1vPWbd+DmRycBBFqOQjY+kX0zpnjCukEA8bGKSsDOVR3/vLbj+UIl7p2q2kFygHYcbco1xw+PafXsVFt89Wm/CuCPZ4uqvdv2K6bYWlWraoGWZBrBvbPG0aZddEwoMvOPZTablzLzm7S/tzPzzZ26zlJDqR8ny3X8cW/r8MuZBbH/EaOibI8+eSsBWMxq6tOITTHR+9RtFIqByrWZo00dqwcKviAOmOKBvTS2TE8HAGuHCg3qU+VCHreyn685oYm0P59tmeRbTZKr+tNNSEDAFJ+6cRUAYExTQdYcz59gVZ+3xxQDO1azvKpqcoqLU0yjPt09U8X64aKvSdD7KS4kIy5OEYgXiqLyfHqmWKk7uOKWbb5KfLbqYKgv28AUlYfsYUOivx8dnwcAf7wUslZLpqjb3PeXWwhF2U7ddOF4ni/UY5mi4/r37qtPU6gcK3XXt023WlgGzz5QnwKtheJ0xcZMJfCkzVCy96nqMqV5CeI0jfo0LTqpPn2n/PhXRPSf0b9OXWepMaHFFt70yETL/dWLqUIVdBuEKz1Ni5razHFFcK+aMJKyZKiJO6s72qRUn64eyKOYFddUuRsPtCCpI9NXAcLeFVWfqpXtdIxKUZWNUhDep83boxYXo6Vc6PzNMFd1kCHgVWcegacds8oXxKpN6r9acLRjU1THVGpu0wLGSoWWmOathSftnpkq1g0V/fFRTbApJgbvK6YYpz51mjPFqDD59UPjeN+P7sP9u2bBzIH6NMIUXam6VB6zqp2KKeZTMEWlSpycr8Fj4MhV/ejLWQmONnJf7TdbtynGMN6aHdSebIsp1p1Yp6c42BGmONRKKGrn27a/7Ld/uC+XqBlR14gWEE+TbcdAoJPqUxWIdzuATTF/ywIqjOK4NSXcmEIoTlVs5K2M/+JUIkwxQxR2tInEKSYJODXIs6GMNukcbcZKBRko7qIiGUO7tdc+9auH8U/fCwrbqlASAFg7WGxgiuq+45hig1DMWS3TZqn+UhNtWvXpQCGLPzvtcHznLc/wBYYvFCWrdzXvU46Js4uDHpKhGFucujE6Meoo5jLwuPmiZvfMAtaFmKK4hpWhWEebuJAMIBxT6B9je7E2xayVgZVpzKurxsze2SoWbFEmaqgv51eACO5ZJBiICkU1XoVNsbGvvJD3qbi2GldrBwtYVcpjfznZ0WYqJBRbeJ86rs+I23G0qdTcQOPQUuUfXhApppgUq6i3c+tkxV+4jvbnE5mianN/pE6qUZ+mR8cSgjPz1fL/1zp1zl7E5LwIozjr6FX41YOtnW1mFuoY7s/5On5d3eVyUCZKVw9Zuvo0Qe3hxNgUC9nmNkVmxlxV2H0K2QxqjufX9mo3efDtW6dwx/YpXPaqU5GRtR9zmvp0cr4WKkyrJow4ddd8zfEdR4DghV6wXQzGCA9AE4qlxsVGEmarti8UgEBgqElpSk6wgfpUtMP2PBQyzYsx+0Kx5vihH3HCTU3Mcd6nqpzUQt1tsAUCYuzMVh0hFFW/yn5YVcqnDt4HEmyKCUwREGwxunBS42zfXM2/9nBfDoMF0ceDsiKH40n7b7+FfDbTwBQTbYpuo/pU2arXDhYwWsphuolNcb/8LUMqTjHZplizXRSjTDGFUJyvOb5tuhVTVPeYbVN9CgDbJso4fFg4F43057BlogzPY1+AK6g+K0VKkxn1aXp0IyH4L4loRPs+SkS/6PR1lgqTZRFGsWawgKlKvSWLmK7YGOnL+RN9iCm6YlAXZMkgZSTPWhnfQy1OwP3+0Un/hdG9T1vFKVZtUU2hv2D57FQJq3bLzMzVRNmr7dIJQKh9pfp0sACPw2ns1IQRzxTd0EusJuZmK2/FHNqzKTohFqOEohLUaoIN1Kfi9zSTo2K15bqrMcUmNsUYRqbsQEkCXqVOWz9c9J+16qPVA4VQ+ajA0aYN9akmGKIo5BpT4qmJdt9szbej6t6nIyVVsYP9LD6lvOX3j9Jy5BO8T0NxivJ+VOD+2qEiRvvzvuAL3YcTduoq5bNwXPaFUrz3aWBPTZvmzZGCdqQ/B6LWYzBqT44Tigt1F3/+xd/j3p0zoUXItv0Vv92KcccVX1aOYf2FCFM0FTNSoxtximuY2U8uyMxTANZ24TpLggmpflxVysPj5FWewnTFxmh/XhOKjUyxmLVQl9XnAbFS3SAzw7znqnBGi0fH5/GaL9+CX9y/x99XoZVQVPbMgULWDwNR29pliirOTYUxiOB9yRRlrKJuVwyYYmubYtwCIoqFCFNMZ1O0/dJKQNBfymuzLCvGR5liGrtiELzvBDbFmNV5M5tif4w2QYcSiuuG+hrUp6sH8n75KCA5JKM/b4Eoyfs03tEGUEwxPEbURLtvrurf81Bf1he8eiq6uiMqg5QK2RimaLWskqEWQSr5xFgpj9H+PKbKdTyybz5UrsxnikooFrKou56voo2PU3QbvU9bPHcVBjRQyKaKrVUOcFH1qT6HbN43h1sf24+7dk7797F+uIhtk2W/j0b6k7UjaqxGmWJaL2qD7ghFl4iOUl+I6GgAqbg7EW0lonuJ6C4iul1uO52IblHbiOhsuf1PiGiT3H8TEZ3bhXtpwKR0VFFu2HErVR1TFak+LagJLxjIjlR/qJdRZcewMoTj1w7i8jc9FeNzNXzwpw/4x6iV8l45QWZjMtokCbggx2gQBqKu2a5NUTGNILYvCEiPC+BPCslgZpTrkTjFXKA+TUJgU5SONmltijpTVEJRE9TTC3Wf9SmWpbwQ98xUE5NQq8moYrt+fGIzphgvFMV9lxOy4uzWmKJiWapfVTC/unaS9ykRiULDSUwxQX0axxR19emkn8c377NxNemL8lbCEWtAE4pq7CY52sSleZuYr2NQhjGtKuWxd7aGV3z2Jrz3R/f5+6qxrDQApYLVkinWnMCeaqV0tKloxbH7tLCqJPghGfI6OSuD/kj5qB37RRKNat312/nEwwZDNsWRJmPe8W2KjXZdg3TohlB8L4AbiegbRPQNAL8F8O42jn8+M5/OzGfJ75cBuJSZTwfwAfkdACYAXMDMTwbwBoiSVV3BQt3Fbx8ex8R8zVefKobSqnzNzIJQn/blw4IPEA4c2Qz5q3O1ylcr1eefsBanHzkSemmUik8JYz2jTRCnGP8CBNUoLD+1XLmeHD7QDErAPrBbsFjlIAQIRxsAodW7rz6NLCIWbBceo8H7FOgGU4xXn6qwGUAISJ8p5sJM8e+/uQn/evX9sedWgpQZ2CvtXnF9GsSqJdsUk/Kn7pH9uW646B+vhIVy5FJjpeaIoPJsjPAdjKmpyMwhwRCFYHPxQnF8roatMsD8qLH+WKaoymWVCtmQc5A4d4L6VPZ7n1Y9ZHy+5i8ARvpF8PtczcHvH51sKK6rZOpAIQvH8/xrxC0A9QVB4GjjYedUJXHBqJ5Tf16YIxbqzd8hNc50J5hoVpudU8IcIcKExHWPWtWPyfmaL3T9hWDMmFfjsBRRn7b7fq9kdFwoMvO1EAH73wHwXQBnMvOB2BQZwJD8PAxgl7zOncy8S26/H0CRiAoHcJ1EbJmYx+v/61b89O5dcD0W6lP5wrcqXzNdsTHSn0N/TLC14zEsCpiiYl/6RBZVLU37TiHiujrjyLdwtAleYskUbc9vTzvqU89jX4A/tCdgiqrd64aLKOUt3LMzqC2oVrVRx4ho2SggYIrNbDTqt6FiTmbnSac+1YVi1PsUEP0aJAQP2xT3zdVCVUZ06CpWxejisgQplWNcnKJvU0xgintmqhjpz6GYs3yBolSt64aFo5KqFVh3vFhnHUDWVIwwxaDyfHpHG6UeHp+rYetEGasH8iGbopq8XY/9jEf64kctoloxxVIhYGETczV/AaC0NSeuG8R8zcE9siRUdCyXCtlQSEZs8L7TqD6tOR5e/Mnf4ju37YjtE58p5rOpktjfvnUK2QzhSYcP+duiQnFHSCiKdq5VNno59tKoTxuZohGKadENpggALoB9AGYAnExEz015HAO4TqpDL5TbLgLw70S0A8DHEc86XwXgTmZuqFdERBdKtevt4+ONGUbS4ITDBlHKW7hOpnYbG8hj1UBroVi1XSzYLkb688jK3J5qElMOEVYmEzDFWpgpAo1qKzWBxzFFP4l4klDUEm8XpbBV29qJU6zYLpjFpLdzagGzVRuuF6hPc1YGTzt2zI/jdFzPn/SiLvR+m/K6TbFR1RyFam9f3kJfrnUCceF564S8T3Ox6lPb7z81Sarv5ZqTaO/TPSWV7a9pnGIMI2vFFHfLGEW97QuyH846ehSDxSx+KcdozYlPOg7IShm18HNQ/dlMfdqMKW4ZL2PjWAlAsMAZ0St5yJJJAxqDScsU+/PZIE6xXPfT8z37+NV45VM2Cl5iaAAAIABJREFU4MuvPwtEwI2bJ+W9hMeCEsTN7Odxjjblmoty3fWfZxT+IrNg+TGmIt9q/Fi89bH9ePIRwyGBFa2puFPmIF6ou36frB0KmyOU+jRuLOoLCYUMpbOLGwh0w/v0byFUpr8AcKn8f0nKw5/FzGcAOA/A26QwfSuAi5n5SAAXA/hq5HpPgihN9Za4EzLzl5j5LGY+a82aNYu4I8HcTjtyBH+QVS5WD2hMsYlNUQ12NYhLWvWHoNAqfI8/JSCiKlH9JVaxdCp8IORo06LET9m3gVgo5jKo1ILVaDu5T1U7z5KZYR7aPQfH9UIxk886fjW2Tlawc6riq3kK2QymK/VQcPq8JqgV+vKtbYrqt2I2g7586+oSVVs40MSrT8Pq6SDNW5gpzkuP2zjok06liUev6uc4m2JL79PZBayXbvl+SEbd8Y/9k5MOwy8f2Os7tiSpQuMKDSsm1o6jjVLV1V0P9z4+g2NWC6F4+pEjOO+UdThr4ygA6WjjeshlKbT40TPaxDJFDmLu1LVF8gkhJI5dM4BP/MXpOHJVP045fNhfhEXbGU2CnpT71A/ej2QLikuerv9eygeONq/98i346M8fij3/3TuncfYxq0LbozUVd0hv7qrtouq4yFnkq6H3SvV5s9jcIG+vcKhSdlyjPk2PbjDFfwTwVADbmPn5AJ4CIBVFU+pQZt4H4CoAZ0PYC38od/me3AYAIKIj5H6vZ+ZHO3UDcTjz6FF/chwbyKMvLwRLkk3x8psew21bhRAd6RODuD+f9VeXKjBZMEWpPpUvn25vamCKUhgGrFJTn7YI+C9rL3ExZ4WSc7fDFJWTxknrhRpo98xCQ+WH5zxhNQDg5kcm/Zd3w0gfHI9D11UTzkCcUGyS6k2pqvryllBdtWCKKsVbXJyirtKd0m2KmvdpzXFhu5wofN0Y7744227d90BsYlNMmISnyrZvQ1WqaiVAc1YGLzllHWYWbD9kp5Ag4AZiCg37RXYTQzKsGEeb4P4WbBcbpVAc6c/j8399pu9w5Xgcsikq6Blt4jxC1fsmyl25sF0P0xXbV5/qeNbxq3HH9qlQZQwFtdiYb+JUVrOD/lJMUY3b+QR1dmiRmbcwW7Vx365ZX3jpuGP7FGyX8bSIUNQXyswcMEXb9bPsKMatnOwCppjcZzmLUMhmMNyXRz6bMerTNtANoVhl5ioAEFGBmR+CSBbeFERUIqJB9RnAiwDcB2FDfJ7c7VwAm+U+IwB+BuDdzHxTx+8igjOOHvU/q1yHq/rjM2q4HuPSqx/A+6VHnLKt9OcDt22dKRYi6tNQ4WDLimWKCnHep0m5T3X1aZRFtGNTVOdZIyenmu1JR5vgnE9YO4A1gwXc+MiE//KqVHf6QqKsMR2F/hRxigvaJJ6mDqEKqB+K8T4t10V1iLyVwVSlHhunqCbAJBYXJwDj+rRZ7lM/aUHCNWpOkLRaCdUFTSg+94lr0J+3cM19e1B3vNhrAMBAPoYptlCfxjHF6OLrWCkUFdR4qDnCmUqoTxttiiqRRBS++lTWgFSmCsUUdZx2xDAcj0OhCwqlKFOMLAA96R0bDd5XzzpJZV7RbfTZDB7ZNy/tp433cutj+0EUaFcUdC3H+HzN74eFunC0EYJNzB9750SFFBVWFM8U1bwialUO92WRs4xQbAcdy2ijYacUWD8C8EsimoJ0jmmBwwBcRWKVlgXwLWa+lojmAXyaiLIAqgCUrfEfABwP4P1E9H657UWSZXYcZxwphCJRIORWDeSxv9xgxvRX3SomT2XD7y9k/VyjrhfDFJWjTcSmGHK0icT56ftaGVGlIukFUC95qWA1OFSkCcnYtG0q9NKryanquKHgfUC4/j/ruDHc/Oik/9IfPhKU+zla2p/m4xxtlPdpU0cbYTPLZChlcV7FFIPr6GytVMgimyHMVGwUBjNS9STzz3qeP6EmCay4mLY4xt4sJCMn7c7lRKEYlHZSAkfdt8iha+GpG1fh7h3TOHykmOhoU9Tsg9/4/VZ89/ad+PArTgHQGMKhIDQW4XZFA8I3RoRiLhJLmc9mQveth2Q4sqSWbjoIYu4s7J52/bjXOKGonHsq0hZHFBSTHogw8OhzUX2h3kM/C5OtmGK8UFTv4mBRONoEuVUbn/umbVM4ad1QKE5WXVNpOXZqNU2rsqqHLhTHZ2soZDOxMc8KAVPMoJATLNN2ayYkow10XCgy8yvkx0uI6NcQHqPXpjhuC4DTYrbfCODMmO0fAvChA2ttegz353D82gHsL9d91ZXIqNHIFKNeaEr90Z+zfJWgLxQpUFn5KlErbFO0XfZTOjUKxfAklrMoWX1ac/xq51FGkMbmcNm1D2HBdvH35xwPIKgyUbVd2J7XMNEfNVbCj+/e5d/XhhFRKUS/h3KMTbGQFUKpmUpUZF8R1yumcLRRKl9dfUok+qLueujPW+jPW5iq1DFayovaeloQt7qHSt0BM0Mu3nzEBUc3zX2aIHyEOi1+Eq45jUmrfYFjBYkT/rhnDmMD+URHm3w2UMlv3jeP+3bN+OdJdLSJYXO262HNYJD8XTnaKERT/OWsjF8hQtxDYFMExBjs08IVPFVFRsYAqsD9NYON6lOlelbq09H+fCh4X/0GNDJFX3UcUZ+2sinuma2ilLcwWMz5HtOqX6KYnK/7i0Id+oJO2RNXDxT8OEUh2MSYnas5GO7LBekAY0weys4bMMUcpip1wxTbQFe8T4noDCJ6O4BTAexk5uZxC4cI/uy0w/GM48b876tK+VibYtVfeYruVYVwSwXLV8P5QtHK+BNBuRbPFIFgddtMfQqIiSfZ0UZkjiGiBoeKNOrT/eU6xudqfjuVbadqe4IpRvIwjvbnwByEKKj8prrHrnIy0BkcEbX0KK3art9vadzhA6EYXgcqwdGfF6vqqYrwpM1mMv6k7njs37PH8X3luNzQp/GONsk2RdGObGzwPjOHnGcyGUKGAjajFiSrBwuYLNcSk3ure1bjqe54YA4yxSQ52sQLRfbrJ64fLoYEmt6mQHBTok1RtUVHELIkKrqocBhlvtChNA3Cecz1wzX03/QqGRyTQi7qaKPiDpOSKeydreIw6fikLybinnulHs7apNCfF5VY6o7nM8Xj15akTVFoBoo5y+8j8V0sGuNs7o5mUzxr4yjO2jgqF9ZGKKZFx5kiEX0AwKsROMdcTkTfk8zukMbbX/CE0HeVZioKNUFf/MInipg9+TLoFeUDpkgNIRm6TVG9qMqe1Ex9KvZPfgHKdRclOXFFHSrSCMWpio3ZBdtXRY705ZDNkO+EEg0UVxPTLhk7p1bKelLw8bkairlMQ7mh/gSP0h37K3jD5bfKpAeWv+/jU/H7fvG3j+KGP47j+LUDAMJMEZATck08m9H+HB6bKPsC3lefuhxibwv1xswvricERNUOhEucyqpZnKK6lzimGMQR6urHYAGk2jpWysN2GRPztVCS9dA9WxZcqa5Ux6titMlMsdHRpi7zma4dKvihIjqiSctFBpd4m6K4RxdA8Hw8FkyxIOuNqgLfqwcbhWK/trCsOZ7vHQ405gH1WAiPIAGCCu+JONrYkikmMPe9szX/vvUFQdxzn6+5DbGDgJbn13axc2oBY6U8xkoFTMzP+UwREO/avrka8tkMiMTYrMWW21JMMYNP/+VTAADX3LvHqE/bQDdsiq8B8BTN2eZjAO7AQVR1HiyMlfKYk3FJuv1GCcWjx/rxklPW+9tLectnHMrdXOU+BRLUp9qEUbXFan3tYFDENyqI0jBFIDy5DhVbu2wzM2YW6rBdxm7pXTdQDJIAOJ7XwH6U2lgJxbWDReSzmVD6t/H5GtYOFhvUkcWEXJKbtk1hy7jInnKiLDRbTLApfuE3j+Lbt+3AqlIeN/xROEBHmaJqcylvYbQ/jzsr08JpyCKNKXohtlCxXYwiDNtj9OezyFmij1YPFNpO8waE7c46/DhCbZzlMgS1vFD3oextu2YWcOyagdhr6MxMTayq+kRiSEY2vkpG3iK85/wnNSw2gGBs6upTffFjWVGhGA35CNSnNdvDxLxYQJXyjYJ7QFOR1h3PX5DlrUzsAqTuBOp+1T6lAo2qphPVpzNVP8SirwVTLNecUIymghKmVdvFzEIdq0p5f+zrNuRhKRTV91yGYivoxBcfT/YzMGhEN9SnWwHoy8YCgK6GSywVlHt8lL2plWfUmaVPc79W+TT13Kex6lNtAlMM66hV/f7vVqZRfdqMKfbLyUOfXFeV8i0dbcp1119tbpuoSJfvIF2cYFfh4aQckpRQLBUsHDnah+2TFX+f8bma77qvoz8frz7dOlkGkegj1b99CRXrq7aHdUNFfOl1wiRNFDhdKOjq0+H+HKYrNmyXYWUyEZuiXskgzsHBg5Uhnw2sHii07WgDSJtizCTsV72IMEVxLvIXFbpKOykkQxeKagJXdsEk55yCtEPqakdV+eI5T1iD048caThGCWo1rkVC8OD82Yj6NCoUFVMs5oS6d99cDWOlQsMCCgjYoAqvUck1os49cQWTffVpxNEmEIqNY8vzGPvmqjhMMcUmNkXXE6E8cepTP89v3UW5Jt5PoS52Q2n3lLONej65bCa23qjSQOkL66xRn7aFbgjFGoD7iei/iehyiLCKeSL6TyL6zy5cb8ngJwWPqFBVzFVURVnKZ31HDZ0pqoEfqE8bhWLN8XzhqwvFKDsTq8LkkAy1WtXVZCP9+ZbqU11NvHWy7K/MFVO03UamqIKMH58WLKQvZ2HjWMnPkwlIoRjjTairmnVsn6zg8OE+fPIvTsdbnnusf9745MiC8T3lqFG85uwjsWGkr6H+nJokhfo0j7rrYbZqI5uhkE1Rj1WLE9a2VLkqFpPEFFPZFOOYYkx9RD2DkIJubyskCF5fCLlB8gZfKDYJ3ldqRwWVui0JftJyO7ApDsTYFAMTQfi+HbnQUPUK/7Blf6zqVJ0jZxEmy8rumJfbw0JRaQr0a1UjTDHqIFTXChQr7K8IjcA6mW2m6D/3fMNiSA/yj0KvCKPeT+V8o+IUgSA2UT2fbCYTX4XFr7QTXggY9Wl6dEN9epX8U7ihC9foCahJf6ossrS890f34TVPPSoxO0hf3vIdNVSwdyZDyGQI+WxGC97XbYpyArM9P/PKkU2YYj4hOwgghOKqUn9D20b7c74zTBRf//1WFLIZnLx+2N+2dbLssztRC1JUXY86/YxGbIp9eQtHj5Xw+y2Tvgfn+HwNTz92DFH05TKxgm7rZBlHj/XjgtMOD/bNWzL1XNgrVHf++fDLnxwb4pGXk04pb/mLnH2zVWQt8icW1+WQCi0paDprkc/Ex0rxCw21eIhjO4Bg03FMVDFh3XlGtU8fL6u1wPYkAaeEpWCK4rz7WtkUc8ExeomyYozaNGhfo/dpOPdp4Dyizq3D9cT4fuUZR+Azv34Ee2arOGXDEJLQn8/62hT1buazmdC4HOrLYbJcD3mgqvc1KhR1226l7iCfDfp2r5acHQDWDxWRtzJ48oZh3L9rNtSuslZNIwrdpliuuxgt5f3Yxarj+v0+5DPFQDsQzxTFtqj6dLZqmGJadJwpMvPXmv11+npLCaWqmizXMV9z8K0/bMcNf9yXGAhd0laFajyrwVvMZvyXJ5TmTU0YruerhkJMMaKyzFuUbFOsOyGGp64/UMwlMsUrb92Bb/1he8jrtWp7/qq3mBVxVspjM3q/OYsws2D7LuJHj/WjUndloLKL6YqdoD6NZ4rbJit+jKNCMWeBY7xClXoPEIuPqDMPAD9EoC9v+e3YM1ttYIq6UEwq2WNlxKQ/UBBxa3EqK9tpDF2J3nczpqiPKdU+nXWOal6XSc48cepTVdkjKaNNnNpR2RSToDxklXCJCkU1zJNsiq7nwSLhsfru804CEO95qjBQyPpJsweLWT+rSzxTDK6lvEyjcYr64icaq6iEolKfnnviWtz0rnNxxGh/w3MPUhnG2BS15PeVuoOSrLjBLDymVd+orFi++tTKxOYzVYwwmtTDpHlLj254nz4BwEcBnAzNtsjMx3b6WksNpdKYrtT9QVexXS3uKfwS6Gm8lJeY8nQr5izsnpG2N03N4quWbNevkKGYIhEa1IHNbIqVmuurawqaLa2QkGYLECETjuc1FAdWk0sxl4lNTyfaRxjpz2N8roa+nAUiwtFjou3bJit+hps4oShCMsIT0VzVxmS57p9DoV9zVtD7PI69RqHbFJUad+9MDUeu6vPvR49TBBKqE7gecpLxDxWzoVhAHbqgjkNLm6LGFOPUpzkrgxFpG02seKEttPxQn4qNDCWrddW5dLWj7TQuhKLIWpkwU8wHizHFlpNCMhRTBICXnX447tk5g3NPTK5XruJMVXtLhay0KQb3pMatfi21+PKZou99Gtxr1K64Z0YwayUUMxnCmsFC7HNvrj6VMYeaTVG1Y6Zi++//cIQpZhPikd0Y9WmSADWIRzdsipcD+DwAB8DzAXwdXax1uJTQwyXUCq2i5V6Mqk+VM8CC7WqDNxCKVdvDeaeswxMPC7wGCyGmGLYpRlki0FwoztcamaJK+ZbEFGcXbFEySXm7yvaWtPMEXrON7VHONsrLTgV4b50o+3aseJtiUENPYZt00NkYEYpJRYntSJLyOARCMet7bqpQg7D3qROrVlNwZKD5msEC1kpVWtykVW9hh+svZFGxXb+KioJS94XUp76jTfh8Y5rnZew9W41MUZzbSlTrxqk4bddLTEKgkMuQ/1zyWULWEnF2+mJFf490KOclQCywPnDByXi2zKkbh1Ih69v3C9kMSvksClkrNAYGCzl5Lc2mGA3ej6h9gcawjD2zIuVadEGXi7HfxSW9V1BhIBVb2RSz/rtSd3VHG+U1LpliJt7RRm0LM0XjfdoOuiEU+5j5egDEzNuY+RKInKXLDrrAUoOuUteYYoyjDSCYYpDmTQzeob4sNoz04WOvPDU0MeU1m+L0Qh35bMZ/EaP2RLV/nAHecUXaKLUyVbYKwRQbY9AAseqcqzlgBjbvE8WEj5ICaSBOKMa0R9l2FJvbMNoHK0PYvr/iC0VVGkdHHFNUQjGqPg0SiEccNSJJyuOgBER/3golmrYygU3RcYWjjbLXJRV3zVkZfOClJ+Nzrz0D+WzGjwXU0UrlWMoL1Vm0invUQxII+jt6jyrTULPgfaBRKCaFY+jH1DQP1HqMc1UUWSujBe+Ltg8UsiFBpcZi1NHG5fgxlYRSwfI1GgXp6ZrPZpDP6jbFRvWp/75qLBaICMUIe983W8XqgULDgkQlRtC9dONqhironucLtisLFjf2jQpv0plibEhGZLENSEFt1Kep0Q2hWCWiDIDNRPQPRPQKAMk6j0MYegLuWkh92hhoDYQn76hQ/OSfn47vvOXpfp5UBT8FluthumxjtD8HS9rH4lSDSfYDZacqRbxPS4VsbK08AKGk0Q/unsNAIesHK4fUp9VGByEFJRQVm8tZGWwY6cPWyUAoJoVkRIWPX919VZgpqnuJqjWjScrjkNOEYs7K+Mw2a2X8ODoVkqHameRoY2UIYwMFHD7S55+3sbJEc3YVBKGHrxHHFHMJTFEJ73ZCMoBkJxtxXfHb9Q/uw5MvuQ4zsu5kEhsN2kiB+jQbaBmi5dFUe3S4ntdgHmiGUj6rFYgWcaeDxbAAVvGUcUyxwdHGThaKe2arsQkL1IJHZ4t+4vAmNkU/JV0+GwrviKpP1bPLJWgi/DhFXaWesFA2iEc3vE8v+v/bO/M4Oc7yzv+eOrp7pmc00oxGh3VZtmzJJj6wZEMwNrbxYiAQYkhiAyEEQpxwh3AEdj+5Pgm5IZtjWZY1gWRDDCGEALvEgIHY3Bg7NraxAMeWbdmyJVnHaK6ePp79o9636u3qqq6qnqqebun5fj76aLq7quutqq73eZ8bwCiAtwD4fXgm1FcXcJwVRxfgXmo2fU1xIY2muNT0Hzy9ojtr/XjkMczk/WMLS/7DsaoSHYhScjxTSTgS0/drhPIUR0u2b+rT9VU1M4uBH1HX09QmRjPQ5oRvPo3QFKvt5lPAK2rw8FNz2KGSy6OCJ7Q52RzTI0/NY3q83GGGMoMVTOpNRsVN61P0vnN6vIyj8/W22qcN1SVDjzPK5xdunWX67UbQnsOWFGgD6PsVXJeoQBuzoLaJHmdSoE3N8CmGvztun9v3HcFsrYHDs7XElAzA823pqGm9bTXUpSPQFDvz+7JpioYv3rXwRy89z9P4owJtDNP8Qt17HvX49LNpavmdPsVFbI6oGGTed/23tqREaYr6fusAoWrZabsPvvl0NCr6NKWmaFFkbV4hmtw0RSKqENE0M9/OzLPMvJ+ZXwPgDQDuyus4g4bOCwzMpw0sNpoo2VbHKtfv/rAUmE+TVsJmSsZcremvdMcrbqQPz7W9Ho/Pfd+tuPFrD/rvh8PCvbQA76EM11fVmM13F+pNrBkNhKLuSmD22Yvyca4OmU8Bz6+47/AcDs0uYs2oG1m42g+eMVb0Dx+Zw7aQlmhuG14kNCKKlIcxA22AoCKMXvAAnsYyV2tgrOLE1mQNd3iICx5ZanQXJFqT79AUIwJtAvNpSCj6mmL3SNKlRqtNOMSZW83P9h32tPXFejMxkhbwBLfvU1TbjoU0RTOYzKTZYj8QLQ1mdGfZsXDG9Bi2TVXhGsfSz4/5W19YarVpZ3bEMcM+xYMnan6QjUlgPQq+P6rovTlOIKg9W1V5iuHPw8n7jmVFCjqzILg5JjGfpidP8+lfAbgs4v2rAfxFjscZKErKXKknvwXVuibKdGV2VjeT97th+i1naw1/8l414kTuW7ItPDW3hAcPz+GP/m0v7nj4KADjwVT7E3nl5bRPEfA0w8/fc8D3h5gdwQEv2lZPuIFP0Qz86BzPZMh8CgDnnrYKM4sNfHXvoUjTKdCe1Kw5Nl9vK/Ss8XO9lpp4+Kk5/Mcj3jlHFSkPUw5piloouna7pjhba2C87HiVdqJ8iiFTrZ8L2Ow0n3bzKQYdEKL7HUblKYbPUfsU4zRFM2imllFTfPRo0Bm+3mr5JtE4wr4twHsOnDZB5Z3zsdDvrZkietgkKmrbPC4Q9NMM5ymav2PL8haM5tjM6ON60+vtuG48wnyqrpMZ2KIXOKMR19dSFXu0UBwtOW1WFbP2qXdeSlOMix2I0hQdSd7PQp5C8dnM/C/hN5n5YwAuz/E4A4V2rOvJb06ZT6MmmFE36PnWSKkpmoE280ae4aqKG+1TVNtfdtZabJyo4B2fvFuNq3O1OlqyMabC1gHgc3cfwBs+dif2PuEF1ZjmU8DT+nSkqB6HOflEaa6r/ejT4Lg/c+EmTFVLeOzYQqxQNAWd5sRiw9dQTUYMTfEvvvQjvF2dc5KpEmj3KQIwgpgs/3waKnm/qiID4/IUo2rWRvkU41o6ASk0xRTm07XV3nyKaTRFPbl6VYw40afY5ttS4x0LWTlc1eJImxA1jcyaYnv7sWAMnZpiuKJN+HnV2uKqiguL2n2KepxrI1pY6d9TLaQpjpbs2Gd9xLUD82kpXlM8Y7qKs5Wbxat9Gh0cZ1vtxSG0/9EM/hHiyVModvv1FhHQMxBoTVFPFgu+UOw8Zd98Wmv4IffJmkwQaDNnVNrftXEc29d2FnzWk9S7rtmFn9+zBQ8dnkO9GRS0NlfT7732PLz22dv9B0/3c3tE/T+z4E0EWyY938maUdefCMYqEZpit+hT40EfKdl43WVnAEDkahswfWvtCdThJq1Au0/xyHzdF1qp8hRDQtHXFA2f4lKz5XUY0ZqiWmAcOL6Aaz/wDRycWfSLV2u6Btqk9ikGBAXBkwNtgujT7nmK+hj6/qcJtNHoCOpkn2K7xgIAv3r5GfidF58bGnOpo1xii7P5FEfbNKzO6wQYmmKo9ulI6Ny1ACu7XsEBc5GitbqoZsflKE0xpm1UMG7HMJ9G+xQd28JX3n4Ffur8jep1tE+x3mp1XDPXsHgIyeQZaHOQiC5h5u+abxLRxQAO5XicgcJVrZr85P2lBhbrrcjKIDqReL5uaIoJK2G9uq7Vm6oijfe977xmV+T21128BWetH8N5myfw3X1HAHgTWBBoE4zr+T+xAQBw/wGvLJUux/aY6uumfYo714/j0SMLWD3i4szpMbg2+fmGbYEfUUIxItAGAF71k9vw0W8+5Ld0CqMj9bSGy8xteZYmI0b06YyKigQQWaQ8jO9TLAeBNkC7T1H3Yhwr2xgpOb6g/s6DR/AfjxzDD5884fkvzXqTEZMj4OUpjpa6aIp+2k5YU2x1BI3EpWRctHU13nnNTly6o7N8HhAsBHSA1NqxMh47ttA1JSOsReprkrToiCrG/RObJvATmybatpuqlvDUXK3tvUaTM0WfjpVTmE9HtKZo+hQ7NUVHdSApqc4epqbYLWrajTCbz9aakZ09NBXXwuPHg6L5lYjo06jj1CN8is0Il4FejHgpSrHDEBR5CsV3AvgnIvoogDvUe3sA/CKA63M8zkARaIpGnmIj2nwKeKvCNk0xYVIhIj+5fq7W8CfvOM7ZuArnbPTqQ475gqXZNYFYP3i6/uljSjjOLHpVTs6cHsMt9x/E6tEStk1Vcc/vXuOfX5TmYuKnZIQmhbGyg1vfeWWsyc5sGgt45rpmixPNpzOLdV9rj2pnFcYXiq7WFL3xOjb5JjS9OKiWHYwaxccfUkEnNTU2O8J82lF6LqnMm+93DmmKRhshTZym6NgW3njljsRz1hGg0+NaKHbTFMNC0bsmyebTTu05islqyW8JpmlxsiZqMhpjPrVVubkWB7//NqFY79QU9b0vuzZGm622QJtDs/FFJ/T1qDeMlIxad01xROWmAp0+xbiFSlyRDs86Ev07CUdCC9HkZtZUGuIl8Myov6T+EYBnMPN38jrOoFFSmqL+gdYaLcwvRZtPgaCDudYUoyLdoo4xW2ug3uRITSkO/SDO1Rq+cOkWAadoYkYZAAAgAElEQVTLzGlNcWahjlUjLjaqosda6zMnz6gUAZMo86m5b1wFFW0K08L8hGrdFHX+ZcfrRL641MSJxUa7ppggFDesqmBVxfGvizaJOZbl1+48ruq+jvnm05BQVPfTXKHH5d55PsVuyftB2o7JYr3VIZh8n2IGwQEEQlFre/qc4+qemvtoZrrkpppo7dmi6GITmqmxcof5tBGK6E1iLBR9aqIFRcW11DNo5im2/MR9jd/r0dcUg+21phhlPtVa2VKz3ezf1XzqBp9VS07bQjNOU3SsdvPp/Qdm8PZ/uhu1RrNDUwxyJyUCNQ255iky80EAv5Pndw46ru0JOXPleWx+KTJcW29fbzJa3J68342yE9R0HO1ihgmjJ9jZWgMnag0vBSNCOAVh4d4xAk3R8+FtmPB8iroosUm7+TQ60OZXLz8DV5+7PvW4AUNTVCt0rdWEmwQDnjat2+3MLNT9a5umzNvP7t6Ma562wZ/0141roajzSIM8u6paxesUA11MYKnZ2U/SzFczSfIpVlxPwIdzIcONrAGzIHhGoai21wuO6fHugTlA5+SsNcU0KRlptpuqlnB0fqkttaWVUShqf6zuTm/iGuZQr9Zve0WbdSFTqG3UZbUtajOfHp6ttZVjMwkWQ0aO41Ij1ncOoE0gj5ZtOLbl5w7H3ZNwROnff2sfPnXnfly6Y6pjIagXBCIU03HSBsD0i7CmCABH5urxKzzbS6TVq7x0QtEKKl70qCmeWKxjrORE+mjCD95+FXZ/fKGOVSMOnrF9Ej99wWm4aGu433y7eSfKVElEeM8Lz/FNumkxi6cD3ROgAc+veHyh7tehZeYO7S0Kx7baOktMVkteE2N1Lo7q8gGgLdCGmfHQocB8qns3auI1xe4mQSLyktsjfIph64PWwrKkLehjlGzL1xS1GTBNSoZGB2Elmaf17ztJm52qltDioEkwoDTFDNGnQUR057G0Bld2bZQcu6PMW1jABb0evUCb2ZBP0WzRZaKtAOZiyCzEH8WIuq9mQ2R9r+PcC64V1DNlZnx1rxe2ceD4YsdCUH9nVGCO0IkIxWXi+xSNh+zo/FKs+VSbPZqZNEULR+cCbSUtZnj/7GIjUsvyziF4YC0Cjs7XMb/U8MynFRdrqiX81cuf3lGCDginCOT3c9ITnDYjBsEu0edQcW08ORMEatSbrMyn2cbk2BZOmxjxQ/dtKxCK4xXH8wkvNfHU3JIfqFJrtDpyImOT91OkiUyMuB3pMGbD2WCsvWmKenyzyiStA0YqMRMwoGvBEtaOlWFb5Juzu6WXmGNL2m5SCWbThBouiJBE0AGmUwBpQaE1xXCXjLDp2BfmjoWxcnvBhsOztdhUoqjk/bgAMY32Z5rBOCNdzgXwfqc6JeMHB2bwhGpl9eTxxY5Fkl64xPVZFdoRobhMSsqMYf7gmi3uHjXWbHXUPk06xhFtPo2onxiHWYA8LscPaNcUz1rn5UE9dnQBM4t1v5JGHOZkkiV8PomKa7Xlh/lCMeYcRkq23+MO8IJs6ikCbaL42OuegTdf5QWqOBZh/9EF2BZh0+oRP09RV3YBPE2jw6cYE32alLwPeELxWKhVl9lwVpNW4ERhNrWeHve6ekyMRms/5j4bJyoYcW3/fqRNyUhjPgW83qSarEKxm6ZYUhWcXJtUrd9AyC0sxWuKJcfCaET0aZQ/UW8PtAugucRAG++zUWPBq7X2WE3RtlBXc8hX9x4MjmWUkPTHJObTTOTmUySizwGI1c+Z+afzOtYg4aqmvuGKEbGaok1oGN0T0muKQbBHWnzz6VIDJ2p1X/uJ+n7N+Zsn8MMnT2D/sQXMLETnBZpUYvLBlos2I+oABz2Bx41ntGT7AUKAFzzBHO3nTOL0tUEXDtuywAxcsXMaa6oljLo2Gi3Gj56c9bfRPkY7yqeYMfoU8ITi8YX2oJNaVKBNTEpGGkp2UMh9VcXBp17/LJwxXe26T1kJxQPHF9IH2ugI2YTKN37DbiOBv8kZNUUtFCOePe2n86K5Q+bTRqszed8wn46FzKeHZ5dw6Y4ETVEJoFaLvRzXruZT7zPz2dbvxfoUjXZQX9l7ELs2jPtFN8LlFn2fYkPMp2nIM9Dmz5f7BUS0D8AJAE0ADWbeQ0QXAvggvIbFDQBv0LmQRPQeAL+stn8LM39huWPISsmx2/IUNXH+GccKaYopfCZlx/ajVbME2vgmyJoXlRlVIk1/v+b8zRP45B378djRBd+n2I2k6NPlMFq2A5/iYnz0qR6HqWXoAJ3ljkkLnpft3gwgMGvd9/hxOBahxeyPMcqnWOvQFDmxB+HqURcPHJxte6/WaLZpEt7xolMy0mBqiiXHwnmbJxL2AK7cuQ6XbJ/EfY/PGIE2ST7bdJqi/m0eMXIVM5tP3XiTo2uTv6goOUFXmGaLsRThrzUDbVZVHNQaLSzWmyDyfO2xmmLIl6wXTN01RZ0r2xnVHR996i3Wmi3GD584gZ/bswWPH/MWK+Frpu9RVF6j0EluQpGZb9V/E9EIgK3M/MMevupKZj5svP5TAL/HzP9GRC9Ur68gonPh5T8+DcBpAG4horOZObqFfEG4NqHWaHXY6+Pzi5RPMaJDdhymeSyLpmiaIGcXGx0tl6K+f9fGVXBtwr7Dc1ioNxM1xbZWRj1oZd2olh0/P6xbniWAjjyzoNv78oSibRFWVRy/47sWTPc9PoOtk6M4cHzR93smpWQwcyqf4upRt6MOaK3RwmQ1TlPMft1dm3xtL6359f3XXQgAuPHrD/nm3cQ8RcOX1w1dI/fwbO/mU8siVcs3ItDGtlByApOkLj6uzagdeYp+gJDt+w8Pnaj576c1n3YrBq4JfIoRmmKc+dQJ0ixqjRaqZRtrx8uYWWx0/OZLEX5OIZ7cfYpE9GJ4XTFuVq8vJKLPLuMrGYAOXZwA8Lj6+yUAPs7MNWZ+CMAD8PIk+0pZR5+GNcUuK7xGq2V0yUh3DE1YW+hGEMnYwMxiI5X5dK3qB/gfjx4DEFQAiaNITdEzn+o8xQbKjhU7gYcntXlfUC3vJ37+5gm8+lmn++epNfW7Hj2G3dvWoOxafvqEGdQTZT7VJvZkn2IJx+frbbUqF+udKRm95il64wu6m2T1SVZcy9cUkwKZ3JSaomNbWD3qdgbaZIg+BXSZtGihqH/nZSfoRagXT7HmUzdo6n1otuaXY4sLtAkLoGAx18V8qp5pc5sg0CYu+lRZIupejmzZsds6vLRtG6pbK3SniECb34UnnI4BADPfBeD0lPsygC8S0R1EdIN679cB/BkRPQrPRPse9f4mAI8a++5X77VBRDcQ0feI6HuHDuVfbU4X2w07sWPNp6rVVNAlI/kWmH6FLJoioLQtlZKxKi7QxnjwpsZK+C/nrPe7ayQG2hQpFMu2r4V1i54FOivmaLPVcjXF//kLu/H25+00xuSNYc+2Nfjdn34ayo4VrSlGBNrov9NoikvNlt8ZA/A0xfiKNj34FFMkiMdRMXxyaVMy0oxxslrqEIpZf1NVo+uLiWOYTyuujcOzNTSaLf93Eq8pWpge83IMD52oGYn70a4IN6Qp6sVZt6jxOE0xKt/SPB8gKINYciyjGlO0RUECbdJRhFBsMPPxHve9lJkvAvACAG8kossBvB7A25h5C4C3Afiw2jbq19KxFGLmDzHzHmbeMz093eOw4impXmVLzXa/RFJ5piyaol59WhT/vXFUyzaOqfy9OKHi2J6Z1bUJ42UHv3L5Gf6kmexTLNB8amiKiWHtYaGoBVWOwT8A8JNnTuHdL9iFj7zmYlTLDspOUCDcXKH7DagbnUIxaUy6TdAxI9im1uhM5PYLDPRwjuUIrTYt5rVOHWiTYoxrq2U8dHgOr/jf38bXfnwocz9FANixbhzb13YGDLlWYGV40fkb8eiRBfzNVx/wFx4dFW2M6NN1qwLzaWpNUWllSfm1QLxPsVvXEn3P9fNRdiyjGlPYpyjRp1nItaKN4l4iegUAm4jOAvAWAN9MsyMzP67+P0hEn4ancb4awFvVJp8EcKP6ez+ALcbumxGYVvuGq1tHNRgTIy4W695DE9fg1c9TzOBT1CvfasmJXTnGUS07OKhSFbo9mGXHxsSICyLC+lUVXLdnC/7Ptx9Ojj51itMUR8tB8e1uKSVAN/NpvmMaKzv4teec6b8uO5afaB/lyzF9zToQaLLa/Zpq7fzYfB0bVTWhWqT5NJ2/LgpTEGbd3xxHkkB1DOGSxGS15Bexv2T7JJoZu2QAwI2v3hP5vusEmuJLLtyEW390CH/15R/jNHV9wzmaZvSpLuhw6ETNF9JxPkW/gL/RIADoXLSZjKgyb6amePrUaGwMABCY4Gd9oRiYT8OLpJKYTzNRhKb4ZnjBLzUANwGYgWcC7QoRVYloXP8N4HkA7oUn6J6jNrsKwI/V358FcD0RlYloO4CzAHwXfaZkB3mKoyXHn2DizKe6un3QJSPFMZzOlWRaqiXHL/Qd51MEPBOtGZ361qvPwq9efkZiVKJlkX/OeaZkAF4tyyD6NF0CtEZPRnmPKYzpU7Q7Kom0a4pPqvsQVwJQo4skmLmKixGaou+vS0h3iKJNKPbgUwzGkOwrTLMdEKRlAKoAfMYuGd143WVn4PVXBEXS3/38XWgxcNuPPZdKR54iBULRtS1MjpZwaLaGh4/MYcOqSuzzrasF1X2fpfd/t1gAfWwzGOeNV+7AZ954aew+ejE9K5pi7uSuKTLzPID/pv5lYT2ATytNyAHwj8x8MxHNAvhLInIALAK4QR3nPiL6JwA/gJeq8cZ+R54CRm+6mhf1NVKysbTQiq0Oovug6bqOaTQ/vcLNUuJNUy07flX/bj65km21TUprx8p4zwvPSXWMsutpRHlrZaOhQJvNa0Zit43zKeatvYYpOzaOqIjJDk0xlA+nFyda+4tD15jVuYrMXtpAXrVPgXbtsJuZLgpzAZLkKwwCbZLvw0sv2oTJagkf/cY+LNabPWmKcVy5c13b6+nxMkZLNn70pJfbFxZyVkjDnR4v49CJGo7OLWHbVLwGB7QvhhbrOpAn/hqPhIK49PGtLi1qfZ+ikVajLSnhQBuzL6iQzMAk7zPzgwAuiHj/6wB2x+zzXgDvzTbSfDGLK7u2hWrJq8HZLU+x0WxlquuoH8wsJd40Y+WgLU038+P0eLmruaYbFVXhJEv4fBqqZQfz9SZaLcZsrY7x8njXMQA6qZlziz5Nwgy0CZ+/jkzW6FJcGxI0xdVKU9Tl5bRg7Qi0sZaXp+j/nXF/87edOiUjRTDP7m2T2L1tEh+//VHUGl6VoLw0xTBEhK2To34+aNjS4PjmU+99LRT3H13Ac3e1C9gwJeO+xwXymPiBNhkWvcG801TjtPzm0p2LM29bqX2ajoFK3h9GXCMKrORYvsYSJxRLDqHe8rpkpBUivk+xB/Op2WOum3/w7157SdeC0N2ouF7z5Kz+ziSqqs/cQt2r3ZrGpzhZLeHJmVpueYpJlB0rKBQQLq8VqrF54PgCVo+6Xf1LQCAUtfk0TiguLyXD8secVfBkM59mr7pTcS0s1ltopSjovhy2TI76VWDiUjJ8TXGsjHsfO46j83VsTdQUA6Hoa4pd7vnUmOezDHfq6EZHoI1r+4XdO834Yj7NQiHJ+6cSegU8V2tietzxfQdxJilfU4zokB2H9iX1pikG+3Qzn8YFDqSh4tiFaGRml4+k6FNtepqqlj2hWC8m+jSMrn0LdGqluli85onjtUQtEVDh+LblJ/DrBPOO7vDLrGgDZDed6vFpkqrz+IE2GcZYcWy/nmzWPMUsmJaRjoo2RqANAEyvKuOoWqScPtW9HJ5ZMccXil005dNWj+BLb7scZ6wdSz12pyPQJnB/uHEVbUQopiJP8+k96G4+PT+vYw0SrvHj3LR6BFBuuW55ig3VTzHtCl1PKD35FA1BmjXHMS0V1y7Ed6c14yPzS16D5S5CXV9vPTH4gTYFahpAeySmHboGrkNtfpwnZhawYSJZKBIRVhlFwXXvv07zqU7J6K32KdBbMfG2zigpWnMB2QR3xQ26UoS1njwxhWJHniJ1aoqaJJ+iDr4DPCuHbVGiprxjXbxrIO4YQHtKRrXsYMS1I8q8tedOCt3Jc5Z8UY7fNTSYgTYlx/InqK55ii3Vfy+rpthL9KmxT7fo0+WgI/TyRgt03RJqPEWeou62MF9QnmKYbmXuOjXFRZy3KbnGKOCZUHWgjdYUw2k+y9EUzTqgWam0Bdok5SlmDwaquJaR+5l5eKlpE4pxeYp2EGijSQ60sbCk7tli3Qu6y9u1oOcOs34tAFx70Sbs2dbe9zRoZyU+xTTkaT59OK/vGib8FdtSE65NcKzuPsUgTxHZNcUezKdau+xWIm25VFy7EN+PHrtOZUjnU/QmryB5v2BN0Vj8dLTsMcqJ1RpNHJ5dwoZV3SNPNasNTXExRlPcuX4cuzaM4/SESTqK0jKEor7WukBBN7RJOUvaiFdxZkkdozipuMU0n8ZE9uqFiBaKU9VS4uLSNKkvRDQwzoPAp6gDbbxj/OG153Vsa1sEi7x2akIyuf/iiOiZRHQ7Ec0S0RIRNYloJu/jDArmpOLaRqBNt+agLUYzk6aoQrZ7TMkAitMSAR1oU5xP8Qm/+ED8OYx0mE9VoE3h0afxxQvM+qIHlba7MYX5FNCaYnugTXihtXVqFDf/+uV+1GEWfPNpD/dNW0HSBM/0EgzUXiUo8/BSs3nNCIi8Zzi8QA1rijoIJklLBEIpGUvNngPYuhFlPu0+JkvMpykp4if3NwBeDi/JfgTA6wD8dQHHGQhMYVByrKD7d5z51AoqXqQtYRVoir0k73v7dAuyWS6jJacQLVSPXQvFbuewec0INq0ewQWbVwPoZ55icN4d0afG5OinY6QUihMjJcOnGITd50WgKWb/TQXpL8nj6dV8OhdTECFPKq7tJeJHXNfO6FPvvm1LCLLR+2gBtNgoRih2BNoklH90bUvMpykpZKZk5geIyFbJ9B8holRl3oaRcL5XtezAoi7Rp7rPXr2VesIOfIrL0RSLE4qvv+JMvyZknmjN+AHV0Hcqph8kAKyplvCNd1/lT6b9S8kwg05CPkXVs3Cx3vQT99MKxShNsRih2Lv5NI325/SQS1lxbd8sWPDtw5bJUTz81FzH+2ZFG8CrAbxj3Rgu2T6Z+J2ubeHEYvA77Jaj2CtuR/Rp92OYTYmF7hQxU84TUQnAXUT0pwAOAEheXg0p5sPu2hauv3gLzl4/FutY1z/mxUYzdbh5UNEm+8M11geheM7GVckb9cCY8qHe8chRTIy4OHM6OWRd348gd7Bg86mxQg8vck6bGMHn73kCe/7gFpy93ht7ek3RxWytofrltfuN8mA5KRllN72gC3o+ZstT1Jp+3gUhwuzetibyOQynZBARbvmN53RsF0XZsXDEz1NsFSQUs5tPxaeYjiJmylfBM8u+CV5Xiy0AXlbAcQYC88dYcixsm6p2NbHoSaJWb2VP3l9GoE1R6RhFomu9NluMi0+fTBWYpCffvgXadDGfvueF5+CKnevw0W8+hFvuP4jRkt01gtZkjUrgPzq/FGiKGTukdENrecvJU0wTPOMXLc9wHNMfX6T5FADedc3OyAVs2HyaBdeIOl6oNwtZkIaT95O0dm9MYj5NQ653i4hsAO9l5l+AV6f09/L8/kEkHGiThP4xLzaaqYXieZsm8IYrzsSzdqzNPL7Ap1hcoE1ReN3SvQnmmWckm60Ab0Xv2oR5v59i8cn7mvD9tC3Cs89ai0t3TOH/fv8AFpaaqUPzdfDMkbkl35SYp8bhm097CrRJ71N0evIpmkIx4+AyEnc/Ak0x+zU3y7wt1puZKtWkxTVSMkp2Z6BQx/ZiPk1NrkKRmZtENE1EJWZeSt5j+GkLtEmhlfitZTJoiiXHwruev6un8fXDp1gk1ZIXwZnGl6NxLCvQFPuYvB838RMRXnzBaZm+V1cYOnxiyffXTsU0tu2FPPIU0whUHf2bqaJNW5pLwVIxhuVqijolY7FeTKCNbz5damI0xfebpeeE7hQxU+4D8A0i+iwA34PNzO8v4FgrTtYWPNrHtdho9sWkOVry+iRuWp0uP27QqJYdLDVaODeD39K1CTOL/SsIrsnT/6UF4OFZr9v7xIhbiE9xOYE2aUzTvqaYxXzaR00xDp2D2cs9Ncu8LdSLCbTR17XZ4lT30BTUQneKmJUfV/8sANlqFw0hZgBBFnNSrd7CxEjBoXXwtJQvvu1yv8j0sDE9XsauDeOZKtOYk0RffYo5HsvXFJVQzNsEV7LTa3thKhkCbVw/TzH9tSm7/fMpxjEx4rb1F82C2U9xsd4qJHnfvPZp/MJ//LLzcl1UncwU0U/xpPcjmpTt9CWvzG0W6+mjT5dLUlPbQeYDr7wo88Ns3ofiK9rEp2Qsh1UVr2H14dklHJqttZUZy4PlaIpZfIq6M8uqkfSLMjNvsF/PSJhfuewMvOyizT3ta3ZHWag3cw2Q0rQJxRSa6Pkqf1dIJnehSETTAN4F4GkA/NmYma/K+1iDgBmBl858GiTvFx1ufjKQ1JA3irY0mSE1nxIRpsZKvqb49K35TmpBSkZ27aGcIUjnrPXj+Nc3XooLNqer+QqEzacr84xUy05PecFAENTSbHnNoYswn3oNygHmfPNXhWIq2nwMwF4A2+FFn+4DcHsBxxkISm2BNhk1RRGKhaBNdhalry/bK20FwXPWSteOlXF4toaDJxbbujTkwXK6ZBCR30MzDRduWZ2pIPYgCMXl4KpSjjrXsohAGyBY8IlQzJciruYUM38YQJ2Zb2Xm1wJ4ZgHHGQj0ig1Im7flbdNopW8yLGRDLzyK7pABhFpH5Xw/146V8PBT81istwbKfAp4E31R6S5m9GnR0cNFoK/pjKpIVISmCBh1ZUUo5koRV7Ou/j9ARD9FRE8H0JtxfgggIqO4crrQaI0IxWLQ17joXopAe0J93qbaqbEy9qkSZHkLxbKzPC1jxLUzRZRm/W5N0Zp+Eej5YGaxWKGof+cSQJMvRUSf/gERTQB4O7xC4KvgVbY5aSnZXgh2GnOSuc0wroKHAX2N+6Ep6gmQCjDVrh0rg1UUfWGaYo/X6ILNq3HOhmKCyyttwUvD94wEmmK6Yt29on/nYj7Nl9yEIhFVAPwagB0ANgH4MDNfmdf3DzIlxwJq6XKxzAjFtF0yhGz4mmLR1aQRTHhFTN5rjWT9deP5RhBPjLjYOFHBmet6K0v8wVftznU8Jqb5dBifEf37K9x8qn2KBQndU5U8NcW/g2c6/RqAFwA4F8Bbc/z+gcU3Y2TIUwz/LeSHXqkXnbgPBKarIo611giuyVtTrLg2vvWe5+b6nXnRrUflMBA2nxYWaONk71UpJJOnUDyXmc8DACL6MIDv5vjdA42ehNNoiqZPcRhXwcNAEGjTB03RKVJTLPvfvTpDnt+wYwqRYXxG9DygW38VkbwPmNGn4lPMkzyFog6wATM3soRga4hoH4ATAJoAGsy8h4g+AWCn2mQ1gGPMfCERuQBuBHARvPP4e2b+o+WdQm9kaaRqTp7D6C8ZBnppbNsrvlAsQACvHffMp2vHykMZcNIrwx59qhcwuodm0dGnYj7NlzyF4gVENKP+JgAj6jUBYGZOW7zySmY+rF8w83X6byJ6H4Dj6uXPASgz83lENArgB0R0EzPvW+6JZEV3L8+SpwgMZ2TdMKADbPoxoRIRSo5VSDmyqaqnKeZtOh10hj1PcaPqmfnQYS9yuFJYoI3kKRZBbkKRmQvV4clTPX8egK6MwwCqROQAGAGwBGAmZvdCKfn5QunzFIHhXAUPA6U+5ikC3qRUxL2crJZg0aknFF3bgm0RmkOay7uhQygWpSmK+bQIBm2JwQC+SER3ENENoc8uA/AkM/9Yvf5neF04DgB4BMCfM/OR/g01wPcppjKfrnxbnJOdwHzanwm17NiFmE9ti7BpzQi2To7m/t2Djq5/OoxCcbziolqy8chT8wAKzFNcRnsrIZ5Ba7J3KTM/TkTrAHyJiPYy823qs5cDuMnY9hJ4vsfTAKwB8DUiuoWZHzS/UAnXGwBg69athQxaC8N0LVyCh1yCxorB7aP5FChOUwSAm37lmZmKaZ8sVFwbc0vDWwpxw0QF/3moWE1RzKfFMFBXk5kfV/8fBPBpeIIPykT6UgCfMDZ/BYCbmbmutv8GgD0R3/khZt7DzHump6cLGXcmTdHs4CCaYiH0s8wboIRiQcfavGbU7zRxKqEFyUp1yVguZiH74synkrxfBANzNYmoSkTj+m8AzwNwr/r4agB7mXm/scsjAK4ijyq8+qp7+zlmTZAsni36dBjDzYeBYJHSn+tbKlBTPFXREZXDqinqdm0l5R8tAl9TLEjonqoMkvl0PYBPq1QOB8A/MvPN6rPr0W46BYD/AeAj8AQnAfgIM3+/T2Nto5ShjmQ/e/2dqvhl3vqkiZddGw3VVFbIh4oKHhlWoagjUIuKPAWkzFtRDIxQVL7AC2I++6WI92bhpWWsOKUMmqLZB000xWLQwrB/gTYyKeVNpcDyef1AR6AWlbgPBO4BCbTJl4ERisNMybZgUfpVrWtZWGq2hvaBH3T6WeYNAM7bNIH5pWZfjnWqoP1ww5rLG2iKxQlFHX0qKRn5IkIxB0qOlWm15tiEpebwPvCDTtAloz/X97dedG5fjnMqoYXJsC4ctU+xqHQMQKJPi0KuZg5snRzNlEumH/RhfeAHnSyBT8Jgos2nw7pw1JpikUEwjgjFQhBNMQded9l2vPbZ21NvryfrYQ0iGHT6naco5E/FGW5NcbJaQsm2MNKHQBvxKeaLCMUcICJksdRps54IxWIIyrzJ9R1WtIY1rMFoRIT1E+VifYpS5q0QRCiuAL6mOKQP/KCj+8xJcYThZdijTwHgTVfuwJrRUvKGPSJdMopBhOIKIGAWuMYAAApNSURBVObTYtHCUDTF4cWvaDPEz8h1FxdTVlIT9FMUoZgnIhRXAL36HeYHfpCRQJvh5+pz1mGx3kQvfVlPFYIyb2I+zRMRiiuAI5pioZQcie4ddnZvm8TubZMrPYyBJksjAiE9cjVXAFcCbQql3wXBBWEluGT7JK552nqMlUW3yRO5miuAmE+LxTefyvUVTmIuPn0SF58u2nTeyFJ6BXAk+rRQRFMUBKFXZNZYAfpdhuxUIyjQLtdXEIRsiFBcAXTKwLAmJg86ji2BNoIg9IYIxRXAlUm7UMR8KghCr8issQL4mqIIxULQycwlEYqCIGREZo0VQMx7xbJ5zQje8byzcdU561Z6KIIgDBmSkrECSJm3YiEivOmqs1Z6GIIgDCGiKa4AkqcoCIIwmIhQXAGkzJsgCMJgIkJxBfDLvElKhiAIwkAhQnEFkNZGgiAIg4kIxRVAa4qSvC8IgjBYiFBcAfzkcukMLwiCMFAMVEoGEe0DcAJAE0CDmfcQ0ScA7FSbrAZwjJkvVNufD+B/AVgFoAXgYmZe7PvAM6LNpiITBUEQBouBEoqKK5n5sH7BzNfpv4nofQCOq78dAP8A4FXMfDcRTQGo93uwvSCaoiAIwmAyiEIxEiIiAD8P4Cr11vMAfJ+Z7wYAZn5qpcaWlSBPcYUHIgiCILQxaNMyA/giEd1BRDeEPrsMwJPM/GP1+mwATERfIKI7iehdfR3pMgjyFAft8guCIJzaDJqmeCkzP05E6wB8iYj2MvNt6rOXA7jJ2NYB8GwAFwOYB/BlIrqDmb9sfqESrjcAwNatWws/gTRInqIgCMJgMlCqCjM/rv4/CODTAC4BfP/hSwF8wth8P4BbmfkwM88D+DyAiyK+80PMvIeZ90xPTxd9Cqnwa59KnqIgCMJAMTBCkYiqRDSu/4bnM7xXfXw1gL3MvN/Y5QsAzieiUSU0nwPgB/0cc69ctWsd3nLVDpw2UVnpoQiCIAgGg2Q+XQ/g0148DRwA/8jMN6vPrke76RTMfJSI3g/gdni+yM8z8//r43h7Zv2qCn7jeTuTNxQEQRD6ysAIRWZ+EMAFMZ/9Usz7/wAvLUMQBEEQls3AmE8FQRAEYaURoSgIgiAIChGKgiAIgqAQoSgIgiAIChGKgiAIgqAQoSgIgiAIChGKgiAIgqAgZl7pMfQNIjoE4OFlfMVaAIcTtzp5ONXOF5BzPlWQc87GNmYejDqZBXNKCcXlQkTfY+Y9Kz2OfnGqnS8g53yqIOcsxCHmU0EQBEFQiFAUBEEQBIUIxWx8aKUH0GdOtfMF5JxPFeSchUjEpygIgiAICtEUBUEQBEEhQlEQBEEQFCIUU0BEzyeiHxLRA0T07pUeT94knR8RvZKIvq/+fZOIIvteDhNp7ykRXUxETSL62X6OrwjSnDMRXUFEdxHRfUR0a7/HmDcpftsTRPQ5IrpbnfNrVmKcRUJEf0tEB4no3pUey1DAzPKvyz8ANoD/BHAGgBKAuwGcu9Lj6uf5AXgWgDXq7xcA+M5Kj7sf91Rt9xUAnwfwsys97j7c59UAfgBgq3q9bqXH3Ydz/q8A/kT9PQ3gCIDSSo895+twOYCLANy70mMZhn+iKSZzCYAHmPlBZl4C8HEAL1nhMeVJ4vkx8zeZ+ah6+W0Am/s8xrxJe0/fDOBTAA72c3AFkeacXwHgX5j5EQBg5mE/7zTnzADGiYgAjMETio3+DrNYmPk2eOclpECEYjKbADxqvN6v3jtZyHp+vwzg3wodUfEknjMRbQJwLYAP9nFcRZLmPp8NYA0R/TsR3UFEv9i30RVDmnP+GwDnAHgcwD0A3srMrf4MTxhEnJUewBBAEe+dTHksqc+PiK6EJxSfXeiIiifNOf93AL/JzE1PiRh60pyzA2A3gOcCGAHwLSL6NjP/qOjBFUSac74GwF0ArgJwJoAvEdHXmHmm6MEJg4kIxWT2A9hivN4Mb1V5spDq/IjofAA3AngBMz/Vp7EVRZpz3gPg40ogrgXwQiJqMPO/9meIuZPmnPcDOMzMcwDmiOg2ABcAGFahmOacXwPgj9lzvj1ARA8B2AXgu/0ZojBoiPk0mdsBnEVE24moBOB6AJ9d4THlSeL5EdFWAP8C4FVDrDWYJJ4zM29n5tOZ+XQA/wzgDUMsEIF0v+PPALiMiBwiGgXwDAD393mceZLmnB+BpxmDiNYD2Angwb6OUhgoRFNMgJkbRPQmAF+AF832t8x83woPKzfizo+Ifk19/kEAvw1gCsAHlObU4CGutp/ynE8q0pwzM99PRDcD+D6AFoAbmXlow/hT3uffB/BRIroHnrn1N5n5pGopRUQ3AbgCwFoi2g/gd5j5wys7qsFFyrwJgiAIgkLMp4IgCIKgEKEoCIIgCAoRioIgCIKgEKEoCIIgCAoRioIgCIKgEKEoCDGocmfXhN77dSL6QJd99hHRWiJaTURvKH6UABH9DBH9tupw8a3QZw4RPUlEG4noz4noqn6MSRCGFRGKghDPTfASvk2uV+8nsRpAX4QigHcB+ACA2wBsJqLTjc+uhtcd4QCAvwZw0rU+E4Q8EaEoCPH8M4AXEVEZAJSwOQ3A14no5UR0DxHdS0R/ErHvHwM4U/Um/DMiGiOiLxPRnWo/v1sDEf0WEe0loi8R0U1E9A71/plEdLMqzv01ItoVPggRnQ2gxsyHVSHrTwK4ztjEF+LM/DCAKSLakMO1EYSTEhGKghCDqvH6XQDPV29dD+ATADYC+BN4RaQvBHAxEf1MaPd3A/hPZr6Qmd8JYBHAtcx8EYArAbyPPPYAeBmApwN4Kbyaq5oPAXgzM+8G8A542mCYSwHcabz2tVslzF8Ir/2V5k61jyAIEUiZN0HojhYyn1H/vxbAxQD+nZkPAQARfQxeI9dutVEJwB8S0eXwSqhtArAeXseRzzDzgvquz6n/x+A1d/6k0aWjHPG9GwEc0i+Y+Xalle6E1xLp20YvTMDrDXla6rMXhFMMEYqC0J1/BfB+IroIwAgz36kKpGfllfA6u+9m5joR7QNQQXR7I8Cz4hxj5gsTvncBwETovY/DE+DnoNP/WVH7CIIQgZhPBaELzDwL4N8B/C0CAfMdAM9RUaY2gJcDuDW06wkA48brCQAHlUC8EsA29f7XAbyYiCpKO/wpddwZAA8R0c8BgDK1XhAxxPsB7Ai9dxOAX4Bn3g13hTgbwNAW+RaEohGhKAjJ3ASvr+DHAUBFcr4HwFcB3A3gTmb+jLmD8kd+QwXi/BmAjwHYQ0Tfg6c17lXb3Q5PcN0Nrz3X9wAcV1/zSgC/TER3A7gPwEvQyW0Ank6GjZWZfwBgHsBXVG9EAAARufAE6Pd6vxSCcHIjXTIEYYUhojFmnlU9DG8DcAMz35m0n7H/XwL4HDPfkrDdtQAuYubfWt6IBeHkRTRFQVh5PkREd8GLDP1UFoGo+EMAoym2cwC8L+vgBOFUQjRFQRAEQVCIpigIgiAIChGKgiAIgqAQoSgIgiAIChGKgiAIgqAQoSgIgiAIiv8PtQHcrbcjof8AAAAASUVORK5CYII=",
"text/plain": [
"